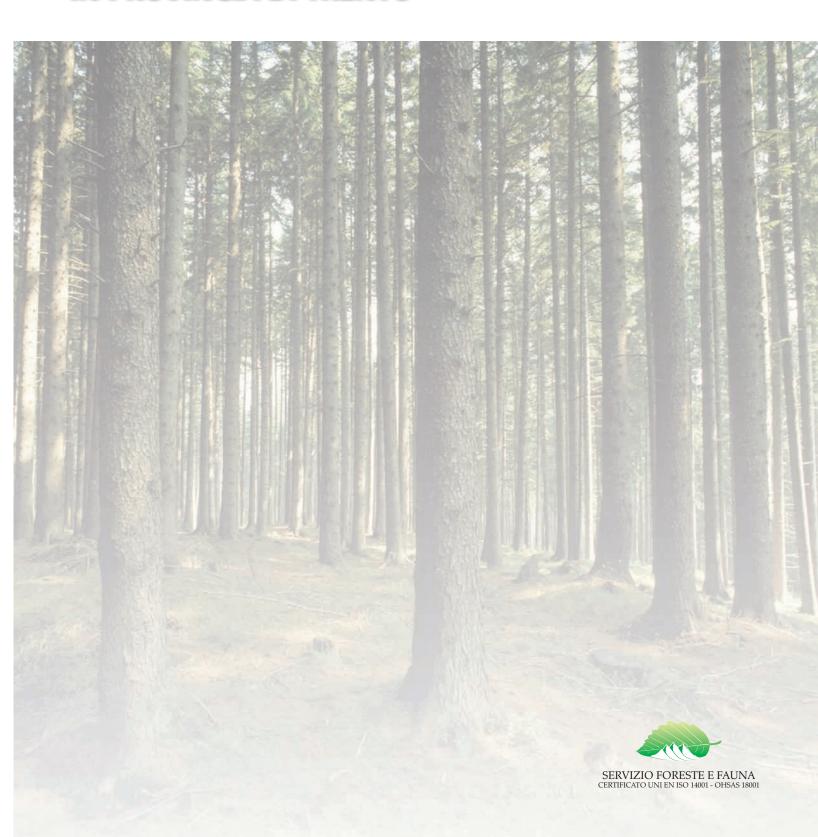


Gianfranco Scrinzi, David Galvagni, Laura Marzullo

I NUOVI MODELLI DENDROMETRICI PER LA STIMA DELLE MASSE ASSESTAMENTALI IN PROVINCIA DI TRENTO



Gianfranco SCRINZI, David GALVAGNI, Laura MARZULLO

I NUOVI MODELLI DENDROMETRICI PER LA STIMA DELLE MASSE ASSESTAMENTALI IN PROVINCIA DI TRENTO

© 2010 Provincia Autonoma di Trento - Servizio Foreste e Fauna

Tutti i diritti sono riservati. Non è consentita la riproduzione, la memorizzazione in qualsiasi forma senza autorizzazione scritta della Provincia Autonoma di Trento

Progettazione e composizione grafica: Luisa Griso Servizio Foreste e fauna

Finito di stampare nel mese di marzo dell'anno 2010 Stampa: Centro Duplicazioni P.A.T.

ISBN 978-88-7702-271-4

Lo studio è stato realizzato su incarico del Servizio Foreste e fauna della P.A.T. da G. Scrinzi (responsabilità scientifica, strategia metodologica, approcci statisticodendrometrici, redazione finale del testo e dell'iconografia) e da D. Galvagni e L. Marzullo (progettazione e realizzazione dei database, data mining, realizzazione e analisi dei modelli regressivi, verifiche delle performance di stima). I testi e l'iconografia in versione preliminare sono stati approntati da L. Marzullo, così come la parte speciale. L'Ufficio Pianificazione e Selvicoltura ha provveduto alla creazione dei principali archivi informatici di base del lavoro inerenti alla raccolta di tavole dendrometriche di Grundner e Schwappach (curata da R. Schober), 1952 – Massentafeln, Verlag Paul Parey, Berlino.

Sommario

Presentazione	b
Riassunto/Summary	7
1. Introduzione	9
2. Costruzione dei modelli a doppia entrata per la determinazione del volume	
cormometrico dei soggetti arborei e ridefinizione delle tariffe trentine	10
2.1 Fase 1– Costruzione dei modelli a doppia entrata MV2	12
2.2 Fase 2 – Perequazione delle serie ipsometriche per specie delle vecchie tariffe	21
2.3 Fase 3 – Nuove tariffe trentine (MV1)	24
3 Modello di cubatura "di popolamento" MPF per le fustaie: dalla determinazione	
dell'area basimetrica ad ettaro alla stima delle masse	26
3.1 I dati nativi o derivati del nuovo protocollo di rilievo inventariale per prove di numerazione angolare	27
3.2 Database di costruzione del modello MPF	27
·	28
3.4 Struttura del modello MPF	32
3.5 Capacità interpretativa del modello MPF	34
3.6 Alcune considerazioni sull'impiego operativo di MPF	34
4 MPC: modelli di cubatura "di popolamento" per i Cedui del Trentino	37
5. Riepilogo: lo studio in sintesi	39
6. Conclusioni	40
1. Introduzione 2. Costruzione dei modelli a doppia entrata per la determinazione del volume cormometrico dei soggetti arborei e ridefinizione delle tariffe trentine 2.1 Fase 1 – Costruzione dei modelli a doppia entrata MV2 2.2 Fase 2 – Perequazione delle serie ipsometriche per specie delle vecchie tariffe 2.3 Fase 3 – Nuove tariffe trentine (MV1) 3 Modello di cubatura "di popolamento" MPF per le fustaie: dalla determinazione dell'area basimetrica ad ettaro alla stima delle masse 3.1 I dati nativi o derivati del nuovo protocollo di rilievo inventariale per prove di numerazione angolare 3.2 Database di costruzione del modello MPF 3.3 Variabili esplicative del modello MPF 3.4 Struttura del modello MPF 3.5 Capacità interpretativa del modello MPF 3.6 Alcune considerazioni sull'impiego operativo di MPF 4 MPC: modelli di cubatura "di popolamento" per i Cedui del Trentino 5. Riepilogo: lo studio in sintesi 6. Conclusioni Bibliografia Appendice - Nuove tariffe di cubatura per le principali specie forestali della Provincia Autonoma di Trento NUOVE TARIFFE DI CUBATURA DELL'ABETE BIANCO NUOVE TARIFFE DI CUBATURA DELL'ABETE BIANCO	
Appendice - Nuove tariffe di cubatura per le principali specie forestali della	
Provincia Autonoma di Trento	
NUOVE TARIFFE DI CUBATURA DELL'ABETE ROSSO	1
NUOVE TARIFFE DI CUBATURA DELL'ABETE BIANCO	9
NUOVE TARIFFE DI CUBATURA DEL LARICE	17
NUOVE TARIFFE DI CUBATURA DEL PINO SILVESTRE	25
NUOVE TARIFFE DI CUBATURA DEL FAGGIO	31
NUOVE TARIFFE DI CUBATURA DEL PINO CEMBRO	39
NUOVE TARIFFE DI CUBATURA DEI PINO NERO	47

Presentazione

La pianificazione forestale ha sempre avuto un ruolo di primo piano nella provincia di Trento, da quando, ormai nel lontano 1956, ha visto inizio l'applicazione dei principi della selvicoltura naturalistica alla gestione delle foreste e, come elemento fondamentale per raggiungere il miglioramento complessivo delle formazioni boschive provinciali, la scelta di introdurre il metodo del controllo per la determinazione dell'incremento dei boschi e la corretta calibrazione dei prelievi.

L'adozione di un sistema di tariffe provinciali per la cubatura delle principali specie legnose, in parte derivato dalle tavole dendrometriche di Grundner-Schwappach, era il corollario di tale impostazione tecnica, in quanto garantendo la confrontabilità nel tempo dei rilievi, consentiva la corretta definizione dell'incremento.

Nel corso degli anni le tariffe, dall'iniziale contenuto prettamente operativo, hanno assunto anche altri significati, semplificando i rapporti tra amministrazione forestale e proprietari di boschi, con un unico riferimento condiviso, venendo utilizzate per determinare parametri di riferimento per l'attribuzione di sovvenzioni sulla base del volume, rappresentando un elemento fisso per la definizione delle riprese, che non consente quelle indeterminatezze che derivano dal passaggio dal volume cormometrico al volume netto.

Il processo di revisione della pianificazione forestale iniziato negli ultimi anni e tuttora in corso, con la necessità di definire un modello per la cubatura dei popolamenti agganciato alle tariffe regionali, ha fornito l'occasione per ripensare a queste ultime in chiave più moderna, cercando comunque di mantenere la continuità con il passato.

E' proprio al passato infatti che si è fatto riferimento nella costruzione delle nuove tariffe provinciali, andando alla fonte dei dati costituita dal sistema di tavole di Grundner-Schwappach e modellizzandone i contenuti, ottenendo così un sistema di cubatura a doppia entrata per ognuna delle sette specie considerate e sulla base di questo ricostruendo le tariffe regionali con riferimento alle rispettive curve ipsometriche regolarizzate.

Il risultato è un sistema di tariffe che, pur presentando sul singolo valore di volume delle leggere differenze con quello precedente, è nell'insieme perfettamente congruo con esso. Le nuove tariffe prevedono una tavola apposita per il pino nero (precedentemente cubato con la tavola del pino silvestre) e ampliano il campo di applicazione dalla classe 5 cm alla classe 85 cm.

Altro elemento di novità del presente lavoro è la definizione di un modello di popolamento, denominato "MPF", che consente la determinazione del volume ad ettaro partendo dalla stima dell'area basimetrica invece che dalla seriazione diametrica delle piante misurate. La sua applicazione consente la realizzazione di rilievi speditivi con l'uso della relascopia in sostituzione del cavallettamento totale. Anche in questo caso la continuità con i dati storici e con il sistema delle tariffe è garantito dall'impiego, nella costruzione del modello, dei circa 10.000 casi di particelle che nel corso degli anni hanno avuto una rilevazione diametrica totale.

Con questo lavoro di elevato livello scientifico il CRA-MPF di Villazzano lascia certamente un segno duraturo nella gestione forestale trentina, a compimento ideale di una lunga tradizione di collaborazione con l'Amministrazione forestale provinciale.

Il dirigente del Servizio Foreste e fauna dott. Maurizio Zanin

Riassunto

Dal 2007 il Servizio Foreste e Fauna della Provincia Autonoma di Trento (Ufficio Pianificazione e Selvicoltura), ha intrapreso un processo di completa revisione dei criteri di realizzazione dei piani di assestamento aziendali in Provincia di Trento. Nell'ambito di tale lavoro di revisione metodologica dell'assestamento trentino, il Servizio si è avvalso della consulenza scientifica e della collaborazione di un apposito Gruppo di Ricerca² del CRA-MPF di Trento (già Isafa).

Il presente studio riguarda gli esiti di una vasta attività collaterale a tale processo di revisione dei metodi dell'assestamento, volta all'adeguamento e al riordino dei modelli dendrometrici storici trentini (Tariffe) riguardanti le principali specie arboree d'interesse assestamentale, ma anche alla creazione dei nuovi (e innovativi) approcci stereometrici necessari all'implementazione delle metodologie inventariali.

Per completezza il lavoro riprende e riassume anche gli esiti dello studio (Sottovia L., Tabacchi G., 1996) nell'ambito del quale fu messo a punto un impianto modellistico dendrometrico "di popolamento" per la determinazione delle masse dei principali tipi di cedui trentini, ora definitivamente adottato nell'ambito della nuova pianificazione assestamentale.

Lo studio qui presentato è rivolto ai Professionisti assestatori cui sarà affidata la redazione dei nuovi piani, ai Funzionari forestali, ai Ricercatori del settore e a chiunque sia interessato a comprendere i criteri dendrometrici attraverso i quali si attueranno, nei vari casi e secondo specifici approcci, le stime delle provvigioni assestamentali e quelle dei singoli soggetti nell'ambito delle operazioni di gestione dei piani (martellate).

Summary

The new mathemathical models to estimate tree and stands volumes for forest management purpose in Province of Trento (Italy-NE Alpine Area)

Since 2007 the Forest and Wildlife Service - Autonomous Province of Trento (Office of Forest Planning and Forestry) has undertaken a process of complete revision of the criteria for implementing the forest management plans in the Province of Trento (NE Alpine Area). For the methodological aspect of this work, the FW-APT Service has made use of scientific advice and cooperation of a dedicated research team of CRA-MPF of Trento (formerly ISAFA).

This study relates to the results of a large sideline activity to this process concerning the adjustment and reorganization of the "historical" volume models (tariffs) of the main tree species of interest, but also to the creation of new (and innovative) stereometric approaches necessary to implement the new inventory methodologies.

For completeness sake, the work also incorporates and summarizes the results of the study (SOTTOVIA L., TABACCHI G., 1996) in which a system of models for the determination of the volumes of the main types of coppice in Trentino area was put in place, now definitively adopted under the new management methodologies.

The study presented here is for Forest Professionals involved in the forest planning, Forestry Officials and Researchers interested in understanding the dendrometrical criteria by which, in the various cases encountered and according to specific approaches, the volume of the single trees involved in harvestig operations and the volume of the stands per unit area, wil be estimated.

Le attività si sono svolte e si svolgono nell'ambito di varie Convenzioni di Ricerca tra S.F.F.-P.A.T. e CRA-MPF denominate *Metafora* (progettazione di massima), *Resia1* (progettazione definitiva), *Resia2* (progettazione di sviluppo - attività in corso all'atto della stesura di questo contributo) rivolte all'ideazione, implementazione e sviluppo delle soluzioni metodologiche inventariali (statistico-matematiche, informatiche e tecnologie) per la nuova pianificazione forestale aziendale trentina. Le attività sono state realizzate in stretta collaborazione con il Personale dell'Ufficio Pianificazione e Selvicoltura S.F.F./P.A.T., A. Wolynski (responsabile e coordinatore), M. Miori, A. Carriero. In corso d'opera si sono tenuti vari momenti di verifica monitoraggio e approfondimento degli esiti degli studi con il dott. Maurizio Zanin (Dirigente del S.F.F./P.A.T.) e con I Funzionari forestali provinciali responsabili degli Uffici centrali e Periferici del Servizio. Si ringrazia il prof. Bernardo Hellrigl (già ordinario di Assestamento forestale presso l'Università di Padova) per il prezioso apporto critico fornito agli studi in varie occasioni.

² G. Scrinzi (responsabilità scientifica, coordinamento, assestamento, dendrometria, campionamento, relascopia), A. Floris e F. Clementel (aspetti GIS, telerilevamento, tecnologia), G. Colle (analisi e programmazione informatica), D. Galvagni e L. Marzullo (statistica, elaborazione dati, *data mining*, strumenti forestali, rilievi in campo).

1. Introduzione³

Dai primi anni cinquanta ad oggi la realizzazione degli inventari assestamentali a scala aziendale nella Provincia autonoma di Trento si è basata sul metodo del *cavallettamento totale* a livello particellare per la determinazione della provvigione reale e sul *metodo del bilancio di massa* (differenza tra provvigione reale attuale e quella accertata all'epoca del precedente inventario, al netto delle utilizzazioni effettuate nell'intervallo di validità del piano) per la stima dell'incremento corrente periodico.

Ormai superata la fase di ricostituzione post-bellica del patrimonio forestale trentino, il settore della pianificazione assestamentale ha recentemente intrapreso un processo di radicale revisione dei criteri di realizzazione dei piani d'assestamento aziendali volto a riconfigurare le priorità d'analisi e a liberare parte delle risorse conoscitive finora impiegate nell'esecuzione delle onerose operazioni d'inventario per utilizzarle invece in altre forme di rilievo in grado di produrre livelli informativi più completi e differenziati rispetto al passato.

Tale processo ha dovuto confrontarsi con la necessità di rendere compatibile l'aumento e la diversificazione dell'informazione da raccogliere ed elaborare nella realizzazione dei nuovi piani con l'esigenza di contenere i costi inventariali e con la necessità di attuare una transizione metodologica attenta al recupero dell'ingente mole informativa esistente, salvaguardando la continuità dei riferimenti quali-quantitativi propri di mezzo secolo d'attività assestamentale.

In tale quadro, l'introduzione del campionamento in luogo del cavallettamento totale, metodo ormai divenuto insostenibile sul piano dei costi e, proprio per questo, negli ultimi anni, ridotto ad interessare sottoinsiemi troppo limitati di particelle, ha reso obbligatoria la ridefinizione del ruolo della particella quale unità primaria d'evidenziazione degli esiti inventariali. Sono state, infatti, introdotte nuove unità inventariali interparticellari ("strati") più vincolate alla reale rappresentazione delle aree boscate aventi caratteristiche strutturali-compositive omogenee e quindi in grado di connotare in maniera più efficiente le differenze tipologiche e dendrometriche. Ciò non solo a livello dell'intero complesso assestamentale, ma anche all'interno delle particelle stesse. Pur in assenza di un ruolo inventariale primario della particella, le nuove metodologie forniscono indicazioni (tipologiche e dendrometriche) con "risoluzione" sub-particellare, aspetto che in passato era solo parzialmente assicurato dalla redazione delle carte dei tipi strutturali. Peraltro alla conclusione del processo è in ogni caso attuata una ricostruzione dei dati dendrometrici a livello particellare pur se connotata da incertezze di stima verosimilmente maggiori di quelle ottenute dal cavallettamento totale (errore nella stima delle masse particellari fino a +/- 8% nel 95% dei casi, Scrinzi, 1989).

Per quanto attiene più specificatamente all'ambito degli inventari assestamentali, perseguendo notevoli vantaggi sia sul piano dei costi inventariali che dell'efficienza estimativa, in un quadro d'adozione di metodi di campionamento statistico stratificato, sono state adottate le prove di numerazione angolare (prove relascopiche, "aree di saggio" relascopiche) quali unità inventariali elementari per il reperimento delle stime puntuali dei dati dendrometrici di strato e in particolare dell'area basimetrica ad ettaro (G/ha). Ciò ha comportato l'assenza di misure diametriche rilevate sui singoli soggetti dell'unità campionaria e la necessità di individuare un sistema di cubatura (per il passaggio alle masse) basato su approcci di tipo collettivo⁴ al posto dell'applicazione individuale dei tradizionali modelli tariffari trentini. Peraltro, quest'ultimi (Tariffe trentine per le principali specie assestamentali), la cui necessità d'impiego permarrà in ogni caso a livello di gestione delle martellate e di contabilità dendrometrica dei lotti (procedura ovviamente basata su approcci di stima della massa per singoli individui), erano totalmente privi di modellizzazione matematica, erano limitati nel loro campo d'espressione ipso-diametrica rispetto alle attuali esigenze e, addirittura, in parte erano perturbati da banali incongruenze d'approssimazione dei valori. Inoltre tali "modelli" erano ovviamente vincolati all'attribuzione aprioristica di andamenti ipsometrici fissi e precostituiti (impliciti nella scelta dell'indice tariffario) e non consentivano quindi percorsi di cubatura diversi, basati sull'approccio classico: seriazione diametrica - costruzione ad hoc di curva ipsometrica - applicazione di un modello a doppia entrata [v = f(d,h)] volto a stime del volume di maggiore precisione.

⁴ Vedi in seguito il modello denominato MPF, chiamato ad operare direttamente sul dato di G/ha e sue ripartizioni

³ Il lettore che non fosse interessato all'approfondimento dettagliato della metodologia dello studio può trovarne un riepilogo generale al paragrafo 5.

La principale necessità incontrata nel quadro del processo di aggiornamento degli "strumenti dendrometrici" dell'assestamento trentino ha riguardato innanzi tutto l'esigenza di rendere congruenti tra loro i vari strumenti messi a punto in termini di "risposta" quantitativa. Ciò soprattutto per quanto attiene alla relazione tra nuove tavole a doppia entrata e le nuove tariffe, ma anche in relazione alla congruità tra modelli individuali (tavole a doppia entrata, tariffe) e modello "di popolamento" per le fustaie. Infatti pur se l'approccio di cubatura per il passaggio dalle aree basimetriche ad ettaro (di derivazione campionaria) alle rispettive masse avverrà secondo un nuovo approccio basato sul modello "di popolamento" MPF, andava comunque salvaguardata la congruenza estimativa con il tradizionale approccio di cubatura per singoli soggetti che verrà forzatamente mantenuto per la determinazione e contabilità dei volumi di martellata e sarà basato sulle nuove tariffe trentine (modelli MV1).

Altrettanto importante era peraltro garantire un'interpretazione matematica delle vecchie tariffe (non preesistente) che, lasciando sostanzialmente inalterata la loro risposta quantitativa, ne eliminasse le perturbazioni di approssimazione dei valori e, al contempo, ne estendesse il campo di esplicazione ipso-diametrica. Ciò ovviamente per mantenere l'assoluta continuità nei riferimenti volumetrici tra vecchia e nuova pianificazione.

2. Costruzione dei modelli a doppia entrata per la determinazione del volume cormometrico dei soggetti arborei e ridefinizione delle tariffe trentine

Il tradizionale sistema di cubatura delle *Tariffe regionali* (nel prosieguo denominato VT), approntato da Cristofolini negli anni '50 e seguenti, definiva, per le principali specie arboree trentine di interesse assestamentale (Abete rosso, Abete bianco, Larice, Pino silvestre, Pino cembro, Faggio), il volume cormometrico di un albero di diametro dato, per ognuna di 5-9 serie stereometriche tariffarie (secondo la specie) cui erano sottese altrettante curve ipsometriche "quida" della relazione h / d. Il sistema di cubatura descritto e le curve ipsometriche ad esso soggiacenti, non erano però espressione di un impianto di funzioni matematiche interpretative degli andamenti ipso-stereometrici. Le serie stereometriche tariffarie sono state infatti definite "per singoli valori puntuali" (erano cioè prive di espressione matematica perequatrice), sulla base di curve ipsometriche di inquadramento (ottenute con perequazione manuale) derivanti da dati rilevati in campo in varie formazioni forestali del Trentino e dell'Alto Adige. Successivamente all'individuazione delle curve ipsometriche guida, a ciascuna coppia d / h (di 2 in 2 cm o di 5 in 5 cm da 15 a 87/67 cm secondo le specie) venne associato il valore di volume cormometrico semplicemente tratto dalle tavole a doppia entrata (per la specie considerata) della raccolta tedesca di Grundner-Schwappach (nel prosieguo denominate GS)5. Come specificato nelle note di compilazione allegate alle tavole GS, per massa cormometrica (derbholzmasse) si intende la massa legnosa epigea del tronco e dei rami⁶ di diametro superiore a 7 cm (misure sopra corteccia) di un albero, esclusa la parte di volume legnoso della ceppaia al di sotto della sezione di taglio.

Come più volte sottolineato, le nuove esigenze nate nel processo di revisione della pianificazione forestale trentina, hanno comportato la necessità di disporre di strumenti stereometrici più adeguati flessibili ed estesi, più facilmente gestibili sotto il profilo informatico, ma al contempo tali da garantire una sostanziale continuità di riferimento volumetrico rispetto al passato, attraverso perequazioni il più possibile aderenti agli andamenti del sistema tariffario "storico".

La strategia generale ipotizzata è stata quella di creare, per ogni specie di interesse assestamentale, un modello di volume a doppia entrata, in grado di interpretare le rispettive tavole a doppia entrata GS di massa cormometrica (anch'esse prive di espressione matematica formale). Tali modelli diventavano quindi successivamente i "generatori" del dato volumetrico tariffario, una volta che gli

⁶ L'inclusione dei rami di oltre 7 cm nei riferimenti stereometrici che stanno alla base della massa delle tariffe trentine potrebbe sorprendere più di un assestatore. Ma i volumi tariffari fanno riferimento alle tavole GS di *derbholzmasse* che hanno esattamente tale riferimento stereometrico generalizzato per tutte le specie.

⁵ La raccolta in questione, curata da R. Schober, ospita tavole realizzate da vari Autori. In particolare, per quanto attiene quelle utilizzate in questo studio: da F. Grundner e V. Baur per l'Abete rosso, da K. Schuberg per l'Abete bianco, da H. Schiffel e K. Schuberg per il Larice, da A. Schwappach per il Pino silvestre, da K. Boehmerle per il Pino nero.

andamenti ipsometrici delle serie tariffarie VT fossero stati a loro volta interpretati matematicamente, riducendo quindi i modelli a doppia entrata GS a modelli ad una sola entrata (diametro) a seguito dell'implementazione del corrispondente modello ipsometrico.

Si può intuire che l'approccio, oltre a dare origine ad un modello a doppia entrata prima inesistente e avente possibilità d'utilizzo proprie, ha permesso anche di originare un sistema di riferimenti dendrometrici perfettamente "coordinato" (e congruente) con le nuove tariffe.

Più in dettaglio, il processo di revisione e aggiornamento dei modelli dendrometrici è stato articolato in tre fasi (Fig.1):

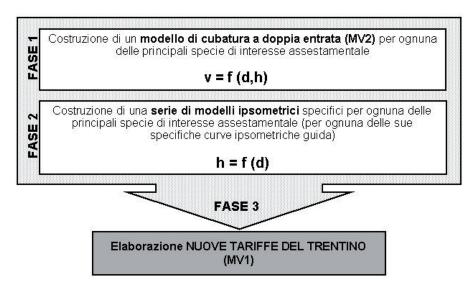


Figura 1. Articolazione del processo di revisione dei modelli stereometrici trentini.

- fase 1 –sulla base dei dati di volume GS e di quelli delle VT, costruzione di un modello regressivo di cubatura a doppia entrata (MV2), v_s = f_s (d , h), per ognuna delle principali specie di interesse assestamentale (7 modelli); dove per s si intende l'indicatore di specie (da 1 a 7), per v il volume cormometrico fornito dalle tavole GS e/o dalle VT (vedi oltre) per la specie considerata in corrispondenza del diametro ad 1,3 m d e dell'altezza h;
- fase 2 sulla base delle serie ipsometriche guida delle VT, costruzione di una serie di modelli ipsometrici, $h_{st} = f_{st}$ (d), specifici per ognuna delle serie e specie considerate; dove, oltre alle notazioni di cui sopra, t è l'indicatore di serie tariffaria, normalmente, ma non sempre, variabile da 1 a 9:
- fase 3 definizione delle Nuove serie stereometriche tariffarie trentine (MV1) inserendo i modelli ipsometrici di fase 2 nel corrispondente modello a doppia entrata di fase 1 per la specie di volta in volta considerata $v_{st} = f_s [d, f_{st}(d)]$; con le notazioni già evidenziate sopra.

E' forse opportuno rilevare con la massima chiarezza che in tutto questo processo si è operato con l'obiettivo di formalizzare matematicamente tavole a doppia entrata, andamenti ipsometrici e serie stereometriche tariffarie risultanti, già esistenti, ma privi di espressione matematica (in sostanza insiemi matriciali di valori puntuali). Ciò è ben diverso dalla usuale prospettiva metodologica di costruire nuove tavole o serie ipsometriche dai valori sperimentali di volume e di altezza di un insieme di alberi modello. Tuttavia proprio l'esistenza di andamenti sia stereometrici sia ipsometrici ben delineati (per singoli valori puntuali) e tendenzialmente da riprodurre con variazioni praticamente irrilevanti (esigenza di continuità dei riferimenti dendrometrici col passato) pone seri problemi a chi effettua tali studi di regressione. I vincoli citati si esplicano infatti sia a livello della individuazione della struttura matematica dei modelli (molto più vincolata) sia nella difficoltà di ottenere espressioni aderenti al fenomeno su tutto il suo campo di esplicazione. A ciò si deve aggiungere che l'esito dell'operazione si rivela in realtà solo alla fine delle tre fasi (differenza tra vecchi e corrispondenti nuovi valori delle tariffe) ed un'eventuale divergenza che si evidenzi come inaccettabile implica cambiamenti correlati su più fronti con un continuo feed-back alle fasi precedenti.

2.1. Fase 1: Costruzione dei modelli a doppia entrata MV2

2.1.1 Database per lo studio dei modelli MV2

Per quanto detto in precedenza, i valori di volume cormometrico evidenziati nelle VT (con l'esclusione di quelli del Faggio e del Pino cembro - vedi oltre) sono un sottoinsieme dei valori di volume contenuti nelle rispettive "Derbholz-Massentafeln" di Grundner-Schwappach.

Peraltro l'articolazione dell'origine dei dati VT è molto varia in funzione della specie e necessita di un articolato approfondimento (Tab.1).

Tabella 1. Origine dei dati per la costruzione dei modelli MV2 per ogni specie assestamentale coinvolta.

	dati di origine				
specie	Tariffe	GS			
Abete rosso - Picea abies (L.) Karsten	Χ	X			
Abete bianco – Abies alba Mill.	Χ	Х			
Larice – Larix deciduas Mill.	Χ	Х			
Pino silvestre – Pinus sylvestris L.	Χ	Х			
Faggio – Fagus sylvatica L.	Χ				
Pino cembro – Pinus cembra L.	Χ				
Pino nero – Pinus nigra Arnold		Х			

Abete rosso, Abete bianco, Larice, Pino silvestre

Le tavole GS dell'Abete rosso, dell'Abete bianco e del Pino silvestre (ma non quelle del Larice) sono articolate per classi di età (2 o 3) del popolamento (coetaneo) al quale dovrebbero essere applicate. Nelle note a corredo delle tavole GS viene infatti esplicitato che: "Per il Pino silvestre, l'Abete rosso, l'Abete bianco e il Pino nero (massa cormometrica), [.. e per il Faggio] sono state prodotte diverse tavole separate per classi di età, dato che per queste specie è stato riscontrato il fenomeno per cui tronchi di pari dimensioni [diametro e altezza], provenienti da boschi di età più avanzata, sono meno rastremati avendo quindi dei volumi maggiori di quelli provenienti da boschi di età inferiore." La presenza di più tavole implica forzatamente la presenza di "zone di sovrapposizione di valori" tra tavole riferite a classi di età diverse della stessa specie ove, alla stessa combinazione di altezza e diametro, corrisponde un valore di volume diverso a seconda che esso compaia nella tavola di massa relativa alla classe di età inferiore (volume più basso), o superiore (volume maggiore) Si veda un esempio nella Tabella 2.

Le vecchie tariffe trentine evidenziano una struttura "di corrispondenza" a tale pluralità di tavole piuttosto articolata. Nelle VT dell'Abete rosso, dell'Abete bianco e del Pino silvestre sono riportati dati volumetrici derivanti da tavole cormometriche GS di varie classi di età in dipendenza della tariffa considerata e del diametro misurato. Per esempio per l'Abete rosso (Fig. 2) fino al diametro 28 (cm), per tutte le serie tariffarie, sono presenti valori corrispondenti alla rispettiva tavola GS di massa cormometrica della prima classe di età del popolamento (fino a 60 anni), mentre, per diametri superiori a 30 cm, la corrispondenza VT – GS fa riferimento alla seconda classe di età (oltre i 60 anni) di quest'ultime.

Sempre nelle vecchie tariffe trentine, si è inoltre riscontrato che nelle classi di fertilità inferiore, (tariffe dalla 7 alla 9) sono presenti triplette di valori diametro (d), altezza (h) e volume (v) non presenti nel campo di validità di alcuna tavola GS. Di tali dati, presenti nelle tariffe di tutte le specie di interesse, nonostante ricerche sia bibliografiche sia "storiche" (presso ex funzionari dell'Amministrazione forestale trentina in servizio all'epoca di approntamento delle Tariffe), non è stato possibile ricostruire l'origine. Essa è probabilmente ascrivibile ad estrapolazioni delle serie tariffarie "superiori" (dalla 6 alla 1) più che ad estrapolazioni dirette sui valori GS.

Il database per l'implementazione dei modelli del volume dell'Abete rosso, Abete bianco, Larice e Pino silvestre è stato quindi strutturato nel modo seguente.

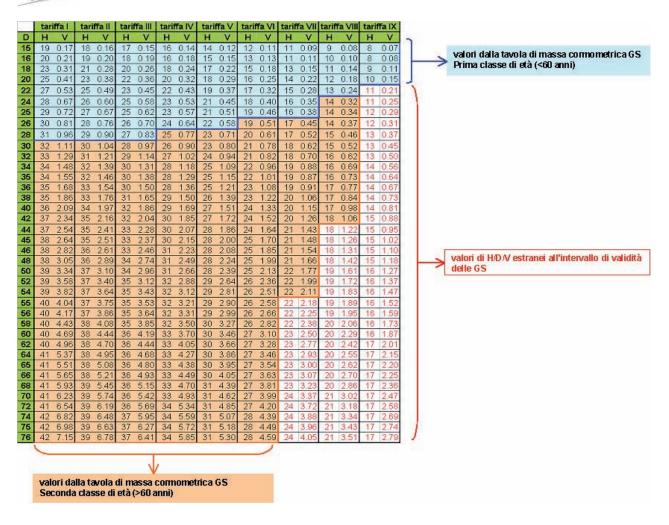


Figura 2. Articolazione dei dati di origine GS nelle serie tariffarie dell'abete rosso.

i. Dati di derivazione dalle tavole cormometriche GS

Il campo di validità delle GS eccede significativamente quello delle VT. L'impiego dei dati GS è stato dunque funzionale all'obiettivo di mettere a punto dei modelli in grado di determinare il volume cormometrico anche per quegli alberi appartenenti a classi diametriche ignorate dalle tariffe tradizionali: classi pre-inventariali 10 e 15, diametro da 7,5 cm a 17,5 cm, e classi di diametro superiore a 80 cm.

Per le specie Abete rosso e Pino silvestre, per le quali sono presenti tavole relative a due classi di età, i valori di volume corrispondenti alla stessa combinazione altezza/diametro sono stati mediati per ottenere un unico valore (Tab.2).

Per l'Abete bianco, unica specie con tavole GS riferite a 3 classi di età, a seguito di alcune prove, è risultato evidente che l'inclusione dei valori di volume appartenenti alla classe di età maggiore delle GS (oltre 120 anni) si traduceva in un allontanamento considerevole dei valori medi dal campo esplicativo delle tariffe trentine. Sono stati quindi mediati unicamente i valori (appartenenti alla zona di sovrapposizione) delle due classi più giovani (41 - 80 anni e 81 - 120 anni).

Per il Larice sono stati inclusi i valori GS tratti dall'unica tavola riferita a tale specie.

Per tutte le specie citate, i valori GS inclusi nell'archivio di base per lo studio dei modelli MV2 sono stati quelli di volume cormometrico per ogni coppia di valori di diametro (di centimetro in centimetro) e di altezza (di metro in metro) evidenziati nelle tavole stesse. Nei casi di cui sopra (zone di sovrapposizione), il valore di volume era quello medio calcolato con i valori delle due tavole GS riferite alle due classi di età del popolamento considerate.

Tabella 2. Esempi di divergenza tra masse evidenziate dalle GS nelle tavole di diversa classe di età del popolamento a parità di specie, diametro e di altezza dei soggetti considerati.

specie	diametro (cm)	altezza (m)	volume classe giovane (m³)	volume classe adulta (m³)	volume medio nel dbase
abete rosso	32	30	1,160	1,170	1,165
pino silvestre	28	24	0,649	0,674	0,662

ii. Dati di derivazione dalle Tariffe regionali trentine

Nel database sono stati inclusi tutti i valori di volume delle VT per l'Abete rosso, l'Abete bianco, il Pino silvestre e il Larice (di tutte le rispettive serie tariffarie). Normalmente tali valori sono evidenziati in corrispondenza di un diametro a 1,3 m variabile di 2 cm in 2 cm e di un'altezza che corrisponde a quella della curva ipsometrica guida di quella specifica serie e specie (in metri senza cifre decimali). Nel determinare il volume da associare ad una coppia di valori di d e h, all'epoca della costruzione delle tariffe trentine, fu quindi considerato il volume GS corrispondente al valore di altezza approssimato al metro intero più prossimo (senza alcuna interpolazione sulle GS). Ciò spiega in gran parte l'andamento "perturbato dall'approssimazione" tipico delle tariffe trentine. Quindi, nonostante ciò non sia a prima vista possibile, i valori di v delle tariffe, sono esattamente valori che effettivamente compaiono nelle GS ma in un "intorno" (limitato) delle "coordinate ipsodiametriche" effettive cui si riferiscono. Si è ritenuto peraltro di lasciare inalterati tali valori (che, in qualche modo, compaiono 2 volte nel database globale) per rafforzare il "peso" delle tariffe nel condizionare i modelli che venivano studiati per regressione, dato che l'obiettivo era di "interpretare, regolarizzando" con i minori scostamenti possibili tra nuove e vecchie tariffe.

L'integrazione dei dati tariffari con quelli di provenienza GS ha permesso, inoltre, di ottenere delle equazioni di stima in grado di interpretare efficacemente i valori tariffari non direttamente derivati dalle GS (serie tariffarie 7, 8, 9) e, ancora, di estendere, ben oltre i diametri bassi (<15 cm) e alti (> di 60-75 cm, a seconda della specie) il campo di validità delle nuove tariffe.

- Faggio e Pino cembro

Per il Faggio e il Pino cembro, il database per la costruzione del rispettivo modello del volume a doppia entrata si compone esclusivamente dei dati delle serie tariffarie storiche trentine. Tale scelta è stata fatta in considerazione del fatto che, per il Faggio, il confronto fra i valori volumetrici delle VT e i corrispondenti valori delle tavole di massa GS ha evidenziato la totale estraneità dei valori tariffari trentini a quelli riportati nelle GS, mentre il Pino cembro è specie completamente ignorata nella raccolta GS.

- Pino nero

Per il Pino nero, non essendo presenti serie tariffarie storiche trentine relative a queste specie (che nella prassi assestamentale pregressa veniva "cubato" con il sistema di tariffe del Pino silvestre), i parametri del modello sono stati definiti considerando i soli dati GS. In tal caso il Pino nero e divenuto "titolare" di un modello MV2 proprio (ovviamente integralmente basato sui dati GS), mentre, per la costruzione degli specifici modelli MV1 (nuove tariffe) si proceduto in riferimento al sistema di inquadramento ipsometrico delle vecchie tariffe del Pino silvestre.

2.1.2 Struttura dei modelli MV2

I modelli MV2, uno per ognuna delle specie di interesse assestamentale, forniscono la stima del volume cormometrico di un soggetto arboreo (v) in funzione del suo diametro a 1,3 m (d) e dell'altezza (h).

I modelli regressivi messi a punto presentano una struttura funzionale del tipo:

$$v = a(d - d_0)^b h^c$$

dove:

v : volume cormometrico (m³) del soggetto arboreo considerato;

d: diametro ad 1,3 m (cm);

 d_o : diametro ad 1,3 m (cm) di azzeramento della massa cormometrica (vedi

oltre);

h : altezza totale (m);

a, b, c : coefficienti specifici del modello per la specie considerata.

I valori specifici di a, b, c di specie sono riportati in Tabella 3.

Tabella 3. Valori dei parametri a, b, c nei diversi modelli MV2 di specie.

specie	struttura dei modelli MV2 : (se $d \ge d_o$) $v = a (d-d_o)^b h^c$											
specie	а	b	С	d_{o} (cm)								
AR	0,000177	1,564254	1,051565	3,694650								
AB	0,000163	1,706560	0,941905	3,694650								
LA	0,000108	1,407756	1,341377	3,694650								
FA	0,000055	1,942089	1,006420	4,009100								
PS	0,000102	1,918184	0,830164	3,694650								
PC	0,000188	1,613713	0,985266	3,694650								
PN	0,000129	1,763086	0,938445	3,694650								

L'equazione perequatrice ($v = a d^b h^c$) è una delle funzioni a due descrittori (d, h) per la determinazione del volume degli alberi più diffusa e utilizzata (ZIANIS et AL., 2005).

Occorre peraltro chiarire come, alla formulazione classica dell'equazione di stima, sia stata inserita

la costante d_{0} , detta del "diametro di azzeramento". do è il particolare valore del diametro a 1,3 m dal suolo, al quale corrisponde un diametro alla sezione di taglio (ceppaia) pari a 7 cm. Per definizione, in corrispondenza di un diametro alla ceppaia pari a 7 cm. deve azzerarsi completamente volume cormometrico soggetto, anche nella porzione di fusto compresa tra 1,3 m (altezza di cavallettamento) e altezza della ceppaia. Considerando che il volume cormometrico è per definizione il volume del fusto e di tutti i rami con diametro superiore a 7 cm, i soggetti arborei con diametro alla ceppaia inferiore a 7 cm devono necessariamente presentare un volume cormometrico pari a zero (Fig.3).

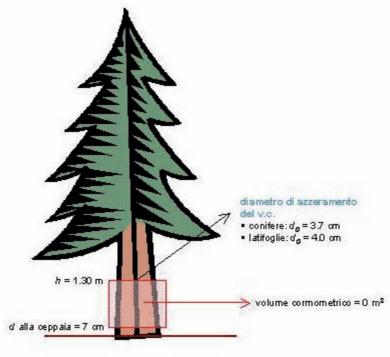


Figura 3. Diametro di azzeramento della massa cormometrica.

Per il calcolo di d_0 sono state utilizzate due relazioni a valenza nazionale (Castellani et Al., 1988), elaborate con i dati di migliaia di osservazioni effettuate in campo nell'ambito dell'Inventario Forestale Nazionale 1985 su altrettanti soggetti arborei appartenenti ai due grandi gruppi di specie, delle conifere e delle latifoglie. Tali relazioni forniscono il diametro probabile ad 1,3 m di un generico soggetto arboreo, in funzione del diametro della ceppaia:

$$(2) d = a + b d_c$$

dove:

d: diametro a 1,3 (cm);

d_o: diametro medio in cm alla sezione di taglio (ceppaia);
a: -2,42525 per le conifere, -1,43966 per le latifoglie;
b: 0,874266 per le conifere, 0,77839 per le latifoglie.

Impostando nella (2) il diametro alla ceppaia di 7 cm (limite inferiore di riferimento della massa cormometrica), si ricavavano rispettivamente valori d_o di 3,69465 cm per le conifere e di 4,00910 cm per le latifoglie.

La presenza di d_o nella struttura del modello implica l'introduzione di un vincolo allo stesso e cioè quello di fornire il valore di volume cormometrico zero al diametro 3,69465 ad 1,3 m, nel caso delle conifere, e al diametro di 4,00910 cm per le latifoglie e permette all'equazione di stima di fornire dei valori stereometrici fino a diametri minimi pari allo stesso d_o .

Il campo di validità dei modelli MV2 ha dunque un'estensione che va da diametri minimi uguali a d_o (diversi tra conifere e latifoglie) e diametri massimi superiori a 80 cm.

2.1.3 Capacità interpretativa dei modelli MV2

Occorre nuovamente sottolineare che l'approccio in fasi descritto al par. 2 ha portato, tramite lo studio dei modelli MV2, a realizzare un nuovo sistema di modelli a doppia entrata per le principali specie assestamentali trentine (in precedenza inesistente) sovraordinato al nuovo impianto tariffario ma ad esso congruente. Tale sistema è sostanzialmente costituito dalla interpretazione matematica dei valori forniti dalle GS, integrati da quelli delle vecchie tariffe, con le varie articolazioni di combinazione di valori già ampiamente chiarite al par. 2.1.1. E' vero che i modelli MV2 messi a punto costituiscono un passaggio preliminare (peraltro fondamentale) rispetto all'obiettivo finale del lavoro che è quello di interpretare matematicamente e regolarizzare le vecchie tariffe trentine per renderle strumento idoneo ai nuovi sistemi assestamentali, tuttavia i modelli MV2 possono assumere valenza propria in procedimenti di stima dendrometrica basati sull'applicazione di tavole a doppia entrata in presenza di curva ipsometrica specificatamente studiata per il soprassuolo considerato e non sull'attribuzione di un modello ipsometrico guida preesistente come avviene nel caso della cubatura classica basata su tariffe. Vale quindi la pena di verificare le performance di adattamento dei modelli MV2 sia ai dati originali GS che a quelli del vecchio impianto tariffario VT. Tali indicazioni sono evidenziate nelle successive Tabella 4 e Figure 4 e 5 per quanto attiene il confronto tra i dati GS e i rispettivi volumi stimati dai modelli MV2, nelle successive Tabella 5 e Figure 6 e 7 per quanto attiene invece il confronto tra i dati VT e i rispettivi volumi stimati dai modelli MV2.

Nell'operare tale confronto (i cui risultati sono peraltro molto positivi) occorre però sottolineare alcuni aspetti necessari ad una corretta interpretazione dei parametri di performance di adattamento:

- 1. per quanto riguarda i dati GS essi riguardano l'Abete rosso, l'Abete bianco, il Larice, il Pino silvestre e il Pino nero, mentre non riguardano il Faggio e il Pino cembro (vedi par. 2.1.1);
- 2. i dati VT inseriti nel database per la costruzione dei modelli MV2 riguardano invece di nuovo l'Abete rosso, l'Abete bianco, il Larice e il Pino silvestre, in tutti tali casi integrando i dati GS; per il Faggio e il Pino cembro (per i motivi già chiariti in precedenza) i dati VT sono gli unici sui quali è stata basata la costruzione dei rispettivi modelli MV2;
- 3. nel valutare gli indicatori di performance, occorre considerare con attenzione che un contributo inflazionistico ai parametri di adattamento del tutto apparente è dovuto alle approssimazioni

dei dati originari sia GS, sia nel caso dell'Abete rosso, dove le tavole evidenziano volumi con due sole cifre decimali, sia, soprattutto nel caso delle VT (altezze di riferimento evidenziate al metro intero per tutte le specie). Inoltre, sempre nelle VT, sussistevano numerosi episodi di consistente perturbazione della regolarità dei fenomeni dovuti a semplici errori di riporto o stampa (un po' ovunque) o di estrapolazione manuale effettuata incongruentemente, specialmente a livello dei diametri alti delle tariffe 8 e 9 (molto eclatanti nel caso del Pino silvestre e del Larice, come testimoniato dai valori sostanzialmente aberranti dei residui isolati visibili nelle Figure 6 e 7);

4. si consideri infine, per quanto attiene i valori di massa stimati per i soggetti di piccolo diametro (preinventariali nel linguaggio della nuova pianificazione trentina), che piccole differenze di stima si traducono in valori percentuali di scarto anche sensibili, data l'esiguità della massa di riferimento per tali soggetti.

Tabella 4. Indicatori di performance di adattamento dei modelli MV2 ai dati GS (per grandi classi diametriche).

	ance di adattamento del modello er grandi classi diametriche)			specie		
intervallo diametrico	MEDIA del parametro indicato	Abete rosso	Abete bianco	Larice	Pino silvestre	Pino nero
	d MIN presente nelle GS (cm)	8,0	7,0	6,0	7,0	6,0
	volume GS (m³)	0,119	0,100	0,081	0,096	0,071
	volume MV2 (m³)	0,119	0,088	0,076	0,080	0,065
d<17,5 cm	altezza (m)	15,43	14,05	11,14	14,54	12,05
(preinventariali)	residui con segno (m³)	0,000	0,012	0,005	0,016	0,006
(promvontanian)	residui assoluti (m³)	0,003	0,013	0,005	0,016	0,006
	residui relativi con segno (%)	-1,2%	13,0%	-1,7%	16,8%	14,3%
	residui relativi senza segno (%)	5,1%	16,7%	13,0%	17,3%	14,3%
	volume GS (m³)	0,435	0,430	0,397	0,375	0,270
	volume MV2 (m³)	0,441	0,417	0,385	0,359	0,268
17.5 cm d - 27.5 cm	altezza (m)	20,95	19,76	19,24	20,33	13,71
17,5 cm<=d<27,5 cm (piccole)	residui con segno (m³)	-0,006	0,013	0,012	0,016	0,002
(ріссоїе)	residui assoluti (m³)	0,008	0,019	0,013	0,017	0,003
	residui relativi con segno (%)	-1,4%	2,6%	2,5%	4,6%	1,0%
	residui relativi senza segno (%)	2,1%	4,4%	2,7%	4,8%	1,3%
	volume GS (m³)	1,395	1,404	1,567	1,243	0,843
	volume MV2 (m³)	1,403	1,413	1,521	1,254	0,847
27 F am 4 d 47 F am	altezza (m)	27,55	25,96	29,42	25,01	16,63
27,5 cm<=d<47,5 cm	residui con segno (m³)	-0,009	-0,009	0,046	-0,012	-0,004
(medie)	residui assoluti (m³)	0,020	0,033	0,059	0,024	0,006
	residui relativi con segno (%)	-0,7%	-0,8%	1,7%	-0,9%	-0,4%
	residui relativi senza segno (%)	1,6%	2,5%	3,2%	2,1%	0,8%
	d MAX presente nelle GS (cm)	85,0	90,0	100,0	70,0	50,0
	volume GS (m³)	4,950	5,432	5,023	3,725	1,921
	volume MV2 (m³)	4,941	5,503	4,913	3,762	1,909
d>=47,5 cm	altezza (m)	35,08	32,71	37,19	30,18	21,50
(grosse)	residui con segno (m³)	0,009	-0,071	0,110	-0,037	0,011
	residui assoluti (m³)	0,022	0,084	0,128	0,070	0,011
	residui relativi con segno (%)	0,1%	-1,0%	1,7%	-0,8%	0,6%
	residui relativi senza segno (%)	0,4%	1,3%	2,4%	1,7%	0,6%
	volume GS (m³)	2,785	2,590	3,199	1,754	0,655
	volume MV2 (m³)	2,786	2,616	3,124	1,766	0,655
Gardin In a Land	altezza (m)	29,45	26,90	32,14	25,37	15,64
tutte le classi inventariali	residui con segno (m³)	0,000	-0,026	0,074	-0,012	-0,001
inventariali	residui assoluti (m³)	0,018	0,047	0,089	0,035	0,005
	residui relativi con segno (%)	-0,5%	-0,1%	1,8%	0,5%	0,2%
	residui relativi senza segno (%)	1,2%	2,5%	2,7%	2,6%	1,0%

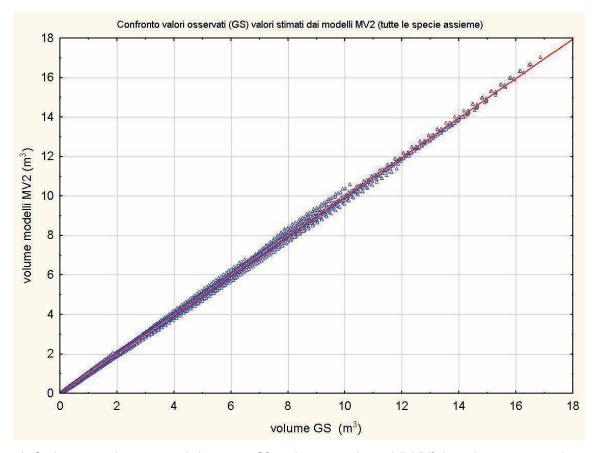


Figura 4. Confronto tra valori osservati di derivazione GS e valori stimati dai modelli MV2 (tutte le specie assieme).

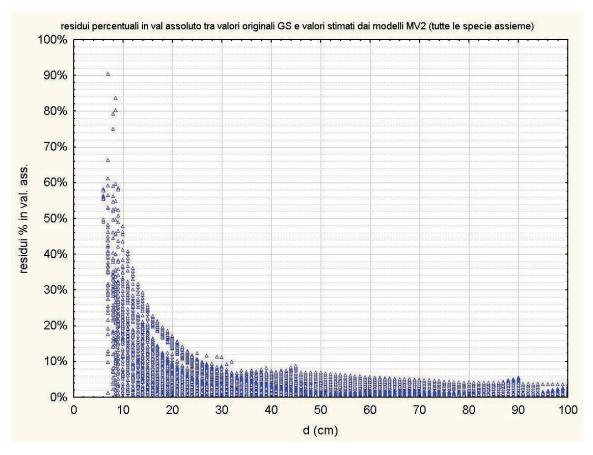


Figura 5. Andamento degli scarti percentuali in valore assoluto tra dati GS e perequazione MV2 (tutte le specie assieme). Si noti che per i soggetti preinventariali di piccolo volume, scarti molto esigui in termini di massa si traducono in elevati scarti relativi.

Tabella 5. Indicatori di performance di adattamento dei modelli MV2 ai dati VT (per grandi classi diametriche).

			specie								
	·	Abete rosso	Abete bianco	Larice	Pino silvestre	Pino cembro	Faggio				
	d MIN presente nelle VT (cm)	15,0	15,0	15,0	15,0	15,0	15,0				
	volume VT (m³)	0,136	0,124	0,118	0,111	0,088	0,094				
	volume MV2 (m³)	0,137	0,119	0,111	0,098	0,091	0,072				
d<17,5 cm	altezza (m)	14,17	12,50	13,11	13,06	10,00	12,29				
(preinventariali)	residui con segno (m³)	-0,002	0,005	0,007	0,013	-0,003	0,022				
	residui assoluti (m³)	0,003	0,007	0,007	0,014	0,004	0,022				
	residui relativi con segno (%)	-1,4%	2,3%	5,3%	10,3%	-3,3%	23,1%				
ı	residui relativi senza segno (%)	2,1%	5,3%	5,9%	11,2%	4,5%	23,1%				
	volume VT (m³)	0,400	0,359	0,312	0,318	0,270	0,275				
	volume MV2 (m³)	0,403	0,359	0,308	0,312	0,268	0,290				
	altezza (m)	19,20	16,80	16,83	17,30	13,71	13,70				
17,5 cm<=d<27,5 cm (piccole)	residui con segno (m³)	-0,003	0,000	0,004	0,006	0,002	-0,015				
cm (piccole)	residui assoluti (m³)	0,005	0,012	0,005	0,009	0,003	0,015				
	residui relativi con segno (%)	-1,0%	-0,8%	1,3%	1,9%	1,0%	-5,0%				
ı	residui relativi senza segno (%)	1,4%	3,8%	1,8%	3,5%	1,3%	5,1%				
	volume VT (m³)	1,329	1,308	1,024	1,168	0,960	1,094				
	volume MV2 (m³)	1,325	1,318	1,030	1,171	0,976	1,098				
	altezza (m)	24,94	23,04	22,30	21,88	17,95	20,50				
27,5 cm<=d<47,5 cm (medie)	residui con segno (m³)	0,004	-0,010	-0,006	-0,003	-0,017	-0,004				
ciii (iiiedie)	residui assoluti (m³)	0,014	0,029	0,017	0,009	0,019	0,016				
	residui relativi con segno (%)	0,5%	-1,1%	-0,8%	-0,6%	-2,4%	0,0%				
1	residui relativi senza segno (%)	1,2%	2,5%	1,9%	1,1%	2,6%	1,4%				
	d MAX presente nelle VT (cm)	80,0	80,0	80,0	60,0	80,0	80,0				
	volume GS (m³)	3,846	4,066	3,066	2,658	2,898	3,868				
	volume MV2 (m³)	3,837	4,066	3,029	2,666	2,888	3,846				
d>=47,5 cm	altezza (m)	29,17	27,01	27,35	24,32	20,60	22,78				
(grosse)	residui con segno (m³)	0,009	-0,001	0,037	-0,008	0,010	0,022				
	residui assoluti (m³)	0,019	0,036	0,078	0,031	0,027	0,048				
	residui relativi con segno (%)	0,3%	-0,1%	1,6%	-0,5%	0,4%	0,6%				
,	residui relativi senza segno (%)	0,7%	1,0%	3,2%	1,4%	1,0%	1,3%				
	volume VT (m³)	2,507	2,609	1,986	1,430	1,898	2,463				
	volume MV2 (m³)	2,501	2,613	1,968	1,433	1,900	2,450				
	altezza (m)	26,26	24,14	24,09	21,57	18,72	21,03				
tutte le classi	residui con segno (m³)	0,006	-0,004	0,018	-0,003	-0,002	0,013				
inventariali	residui assoluti (m³)	0,015	0,030	0,048	0,016	0,022	0,033				
	residui relativi con segno (%)	0,2%	-0,5%	0,8%	0,0%	-1,3%	1,3%				
	residui relativi senza segno (%)	1,0%	1,9%	2,6%	1,7%	2,1%	2,3%				

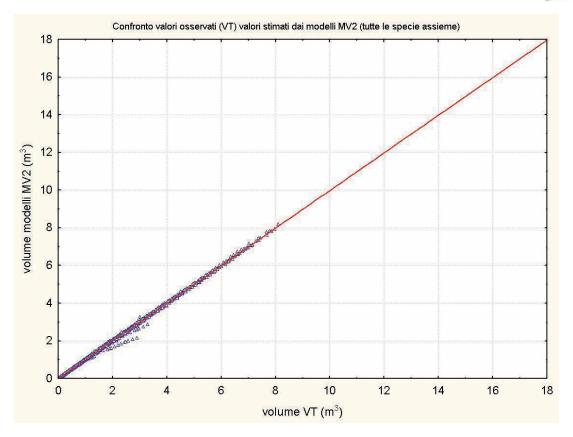


Figura 6. Confronto tra valori osservati di derivazione VT e valori stimati dai modelli MV2 (tutte le specie assieme). Si notino i valori aberranti delle VT (relativi alla tariffa 8 del pino silvestre e 8 e 9 del larice).

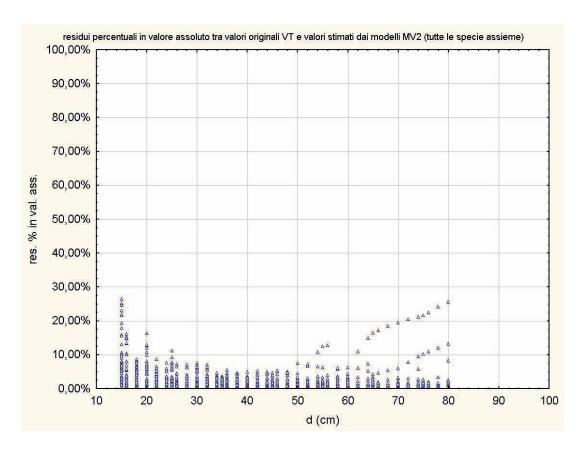


Figura 7. Andamento degli scarti percentuali in valore assoluto tra dati VT e perequazioni MV2 (tutte le specie assieme). Si notino i valori aberranti delle VT (tariffa 8 del pino silvestre e 8 e 9 del larice). Si noti anche come per i soggetti preinventariali di piccolo volume, scarti molto esigui in termini di massa si traducono in elevati scarti relativi.

Mentre per un esame approfondito si rimanda all'analisi delle tabelle e delle figure citate in precedenza, per quanto attiene il confronto tra dati di base e relative stime MV2 si possono così riassumere alcuni aspetti salienti:

- o in riferimento al campo dei soggetti inventariali (d>=17,5 cm), quelli che logicamente assumono il maggior significato assestamentale, la differenza percentuale assoluta media senza segno:
 - tra i dati GS e le rispettive stime MV2 si assesta intorno al 2.0% (0,039 m³) ma, considerando l'importanza relativa delle specie (quasi il 60% del patrimonio è dato dall'Abete rosso), tale valore non supera in realtà l'1,7%;
 - tra i dati VT e le rispettive stime MV2, detti valori risultano ancora più contenuti: rispettivamente 1,9% (0,026 m³) e 0,9%; si noti che anche per il Pino cembro e il Faggio, per i quali i dati di derivazione dei modelli MV2 provengono solo dalle VT, i valori di performance di adattamento rimangono sostanzialmente analoghi;
- o in riferimento al campo dei soggetti preinventariali (d<17,5 cm):
 - I modelli MV2 mostrano una buona corrispondenza ai valori GS per quanto attiene l'Abete rosso e una limitata tendenza alla sottostima (scarto medio assoluto nell'ordine del 13%, pari a circa 0,009 m³) per Abete bianco, Larice, Pino silvestre e nero; il fenomeno, peraltro tollerabile, pare imputabile alla necessaria adozione nei modelli MV2 del vincolo di azzeramento della variabile dipendente volume in corrispondenza del "diametro di azzeramento della massa cormometrica" (vedi par. 2.1.2) che appare peraltro insostituibile sia sotto il profilo teorico, che nel determinare una forte regolarizzazione degli andamenti al di sotto degli 8-10 cm di diametro, evitando le incongruenti intersezioni e torsioni dei piani di perequazione che si determinerebbero in assenza del vincolo.
 - tra i dati VT e le rispettive stime MV2, i valori di adattamento migliorano notevolmente (6%, 0,007 m³) se si eccettua il Faggio (23%) per il quale peraltro il calcolo è basato su soli 7 valori di base riferiti a soggetti aventi diametro non inferiore a 15 cm; occorre dire che essendo 15 cm il limite inferiore di tutte le serie delle VT i valori confrontabili nel campo preinventariale sono comunque sempre esigui.

Occorre sottolineare che riferendosi allo scarto assoluto senza segno si valutano le differenze medie tra valori perequati e stimati in più come in meno, ma nell'applicazione pratica delle tavole si determinano poi le ovvie compensazioni nella determinazione delle masse per ettaro.

2.2 Fase 2 – Perequazione delle serie ipsometriche per specie delle vecchie tariffe

Le curve ipsometriche sottese dal sistema di cubatura trentino furono individuate sulla base di dati rilevati in campo e perequati soggettivamente, a cui non fu quindi associata alcuna funzione matematica interpretativa del fenomeno. Come risulta evidente dalla Figura 8, tali "curve" sono notevolmente interferite da evidenti problemi di discontinuità e irregolarità degli andamenti attribuibili sia all'assenza di un'interpolazione matematica, che alla presenza di perturbazioni nei dati dovute a banali problemi di approssimazione dei valori delle altezze⁷.

Per regolarizzare e migliorare gli andamenti ipsometrici è stato dunque necessario procedere alla perequazione delle curve ipsometriche-guida della relazione h / d di ogni singola serie tariffaria per ciascuna delle specie considerate. Quali modelli di perequazione sono state adottate funzioni polinomiali nelle potenze di d di quinto (o quarto) ordine del tipo:

(3)
$$h = 1.3 + b_1 d + b_2 d^2 + b_3 d^3 + b_4 d^4 + b_5 d^5$$

dove:

h: altezza del soggetto arboreo (m);

d: diametro a 1,3 m (cm);

b_a: parametri dell'equazione di stima.

⁷ Sebbene la circostanza possa sorprendere molti assestatori trentini abituati ai fogli prestampati di fasce di curve ipsometriche di uso corrente per attuare gli inquadramenti ipsometrici tariffari, occorre dire che tali modelli, esclusivamente grafici, erano frutto di una perequazione manuale "regolarizzante" rispetto ai dati originali. Tale regolarizzazione non si è peraltro mai riflessa nei dati di volume soggiacenti alle procedure informatiche di cubatura assestamentale, che, di fatto, condizionati da altezze arrotondate al metro intero, presentano ovvie e forti irregolarità di andamento.

Solo per il Faggio la funzione previsionale ottimale è risultata essere un polinomio di quarto ordine:

(4)
$$h = 1.3 + b_1 d + b_2 d^2 + b_3 d^3 + b_4 d^4$$

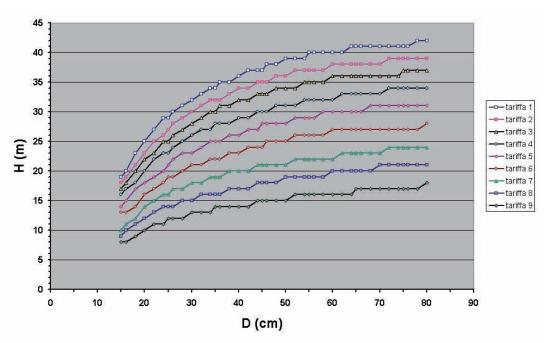


Figura 8. Abete rosso: curve ipsometriche sottese dalle vecchie tariffe regionali.

Come si desume dall'espressione funzionale (intercetta fissa pari ad 1,3 m), in sede di definizione dei modelli è stato imposto il vincolo che essi forniscano un'altezza di 1,3 m in corrispondenza del diametro a 1,3 pari a zero⁸. L'introduzione di tale vincolo ha portato a una consistente regolarizzazione degli andamenti delle curve ipsometriche nell'intervallo di valori di diametro inferiori a 15 cm, evitando le incongruenti intersezioni e torsioni dei piani di perequazione che si determinerebbero in assenza del vincolo.

Occorre specificare che la perequazione non ha operato sui dati ipsometrici originali delle VT (Figura 8) ma su quelli "preregolarizzati" di cui alla modulistica cartacea citata in nota 7, opportunamente tradotti nei rispettivi valori numerici. Le successive Figure (9 e 10) esemplificatrici degli adattamenti delle nuove curve perequatrici fanno tuttavia riferimento all'impianto originale che, di fatto, è quello finora adottato agli effetti delle cubature assestamentali.

La complessità delle equazioni di stima individuate ne determina, da un canto, una grande flessibilità d'adattamento ai valori originali (esigenza di continuità "sostanziale" tra vecchi e nuovi strumenti tariffari), dall'altro introduce qualche incongruenza teorica (priva di significative ricadute pratiche) sul piano dendrometrico laddove determina quasi impercettibili punti di flesso nelle curve ipsometriche finali. Ovviamente, trattandosi (almeno formalmente) di curve ipsometriche, cioè di descrizioni dell'andamento dell'altezza al variare del diametro ad 1,3 m, in assenza di significative variazioni di età dei soggetti coinvolti, le curve, sotto il profilo strettamente teorico, non dovrebbero manifestare punti di flesso. Tuttavia, al di là delle considerazioni teoriche, appare quanto mai ovvio che andamenti che coinvolgono soggetti da 15 cm di diametro a 80 (come accade nelle vecchie tariffe e di conseguenza nelle nuove), difficilmente sono proponibili come riguardanti soggetti della stessa età e quindi la presenza di un flesso nella parte iniziale delle curve dovrebbe essere ampiamente ammessa. In tal caso, infatti, la variazione del diametro è consequenza anche della variazione di età dei soggetti e l'andamento ipsometrico assume connotati misti con curve di sviluppo (altezza su età) le quali presentano tipicamente un flesso appunto nella zona iniziale. Meno ammissibili appaiono, sotto il profilo teorico, gli impercettibili punti di flesso nella parte alta che, qua e là, si manifestano; tuttavia, aver ammesso la loro presenza nei modelli finali ha permesso di spingere i

⁸ In sostanza ciò significa che "appena" un generico soggetto "manifesta" un diametro rilevabile ad 1,3 m, esso è gia considerato avere un'altezza pari a 1,3 m

modelli stessi ad elevate capacità interpretative dei dati di base nel loro complesso. In un bilancio finale si è deciso quindi di tollerare tali incongruità teoriche prive di conseguenze significative, secondo un approccio pragmatico che salvaguardasse prima di tutto il più volte citato vincolo della continuità dei riferimenti tra VT e nuove tariffe Trentine (MV1).

Le serie ipsometriche ottenute dall'impiego dei modelli hanno un andamento molto regolare e non più interferito da discontinuità o difformità di varia origine. Inoltre si sono potuti ampliare i campi di validità diametrica delle nuove serie soprattutto in basso (addirittura fino a diametro 0 dal precedente limite inferiore di 15 cm), ma anche in alto (diametri massimi di 85 cm o comunque più estesi di 5-10 cm rispetto ai massimi preesistenti nelle VT).

Va evidenziato che, a causa dell'assenza di serie tariffarie VT per il Pino nero, le curve ipsometriche considerate per dare origine alle nuove tariffe di questa specie sono state quelle del Pino silvestre.

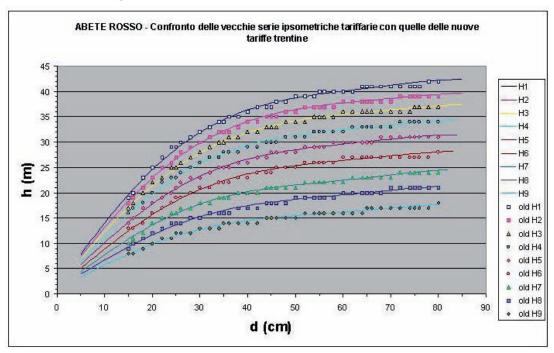


Figura 9. Abete rosso: esiti della perequazione delle vecchie serie ipsometriche.

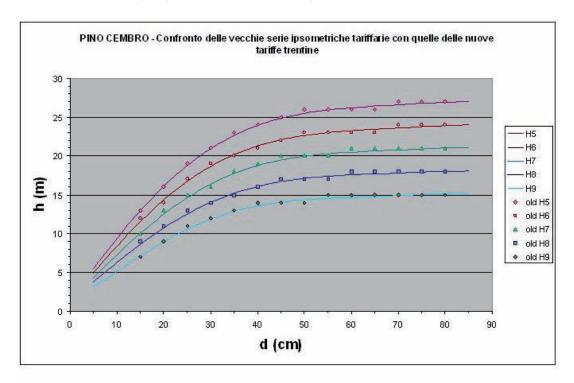


Figura 10. Pino cembro: esiti della perequazione delle vecchie serie ipsometriche.

2.3 Fase 3 – Nuove tariffe trentine (MV1)

In una terza e ultima fase, sulla base dei modelli MV2 e delle nuove curve ipsometriche, sono state ridefinite le serie stereometriche tariffarie (Nuove tariffe trentine o modelli MV1). Ovviamente, per ciascuna serie si è trattato soltanto di integrare il modello ipsometrico h = f(d) nel modello MV2 per ciascuna specie e serie:

(5)
$$v = a (d-d_0)^b h^c = a (d-d_0)^b [f(d)]^c$$

pervenendo al rispettivo modello MV1 ad un'entrata (d) (nuova tariffa per la specie e serie).

2.3.1 Capacità interpretativa dei modelli MV1

Le Tabella 6 riporta gli scarti medi in valore assoluto (senza segno) tra vecchi valori VT e nuovi valori MV1, sia in metri cubi, sia in termini percentuali.

I dati non includono il modello MV1 del Pino nero che non aveva riscontri nel vecchio impianto tariffario.

Nella Tabella si fa riferimento agli scarti "nominali" di volume ottenuti, per una determinata specie, confrontando l'intero complesso dei valori tabellari di volume per tutte le combinazioni diametro/ altezza evidenziate nelle vecchie tariffe, nei confronti dei nuovi corrispondenti valori MV1. In tal caso si forniscono valori medi di performance di adattamento appunto "nominali" in quanto ogni tripletta (diametro, altezza, volume) pesa esattamente come tutte le altre nella determinazione degli scarti medi, indipendentemente dal fatto che l'incidenza reale delle classi dimensionali arboree nel patrimonio forestale trentino non è certo identica per tutte le tipologie di soggetti.

Proprio per tener conto di tale aspetto relativo alle ricorrenze reali medie delle varie classi dimensionali arboree si è ricorsi ad un'interrogazione degli archivi "PEF" della P.A.T. relativi a tutti i cavallettamenti più recenti realizzati in tutte le particelle sottoposte a inventario per cavallettamento (oltre 21 milioni di soggetti arborei). Per tutte le specie coinvolte sono state determinate le distribuzioni in numero di soggetti per classe diametrica e serie tariffaria, poi trasformate in distribuzioni relative rispetto al numero totale dei soggetti censiti (es. per l'Abete rosso in Fig. 11). Gli scarti "nominali" (vedi sopra) tra valore di massa delle vecchie tariffe e nuovi valori MV1 sono stati poi "pesati" in relazione a tali distribuzioni relative, determinando uno scarto medio senza segno di specie, che tiene quindi conto della reale ricorrenza delle classi dimensionali e di tariffa.

Considerate le diverse specie valutate, lo scarto medio assoluto *nominale* in metri cubi evidenzia valori compresi tra 0,022 m³ del Pino silvestre e 0,058 m³ del Larice, con una media generale di 0,036 m³. Lo scarto percentuale medio non supera il massimo valore di 3,12% per il Larice, con un minimo di 1,32% per l'Abete rosso e una media generale del 2,25%. Da evidenziare il fatto che lo scarto percentuale tende, per propria natura, ad essere maggiore quando viene calcolato rispetto a volumi bassi. Il valore complessivo dello scarto percentuale medio risulta quindi fortemente influenzato da scarti riferiti a diametri di piccole dimensioni, pur se questi contribuiscono alle masse assestamentali marginalmente rispetto alla determinazione della massa totale. Se si considera poi che oltre il 60% del patrimonio forestale trentino è dato dall'Abete rosso si può ritenere che lo scarto medio assoluto tra determinazione della massa di un generico soggetto effettuata con le vecchie tariffe o coi nuovi modelli MV1 non superi in media l'1,8% in termini *nominali*.

Per quanto attiene invece lo scarto medio assoluto *reale pesato*, esso si attesta su valori assoluti notevolmente più contenuti (0,020 m³ in media per tutte le specie) come è ovvio se si considera che le distribuzioni dei soggetti censiti è notevolmente spostata verso i diametri piccoli e medi (che presentano scarti VT- MV1 più bassi), con un massimo di 0,033 m³ per l'Abete bianco e un minimo di 0,012 m³ per il Pino silvestre. In termini di scarti percentuali esiste invece la tendenza opposta (media generale 3,25%) proprio in relazione al fatto che il maggior peso dei soggetti piccoli e medi (che evidenziano scarti percentuali VT- MV1 più elevati in relazione all'esiguità dei loro volumi) determina un innalzamento della media di tali valori rispetto a quanto accade nel caso degli scarti nominali. Anche qui, tenendo conto della ricorrenza globale delle specie, si può in realtà ritenere che lo scarto medio assoluto *reale pesato* tra determinazione della massa di un generico soggetto effettuata con le vecchie tariffe o coi nuovi modelli MV1 non superi in media il.2,2% (0,018 m³).

Tabella 6. Indicatori di performance di adattamento dei modelli MVI ai dati VT.

omenia	SCARTI MEDI ASS	OLUTI nominali						
specie	in m³	in %						
AR	0,028	1,32						
AB	0,043	2,34						
LA	0,058	3,12						
PS	0,022	2,22						
FA	0,042	2,37						
PC	0,023	2,12						
media	0,036	2,25						
specie	SCARTI MEDI ASSOLUTI reali							
specie	in m³	in %						
AR	0,014	1,30						
AB	0,033	3,51						
LA	0,031	3,10						
PS	0,012	2,86						
FA	0,014	5,04						
PC	0,019	3,67						
media	0,020	3,25						

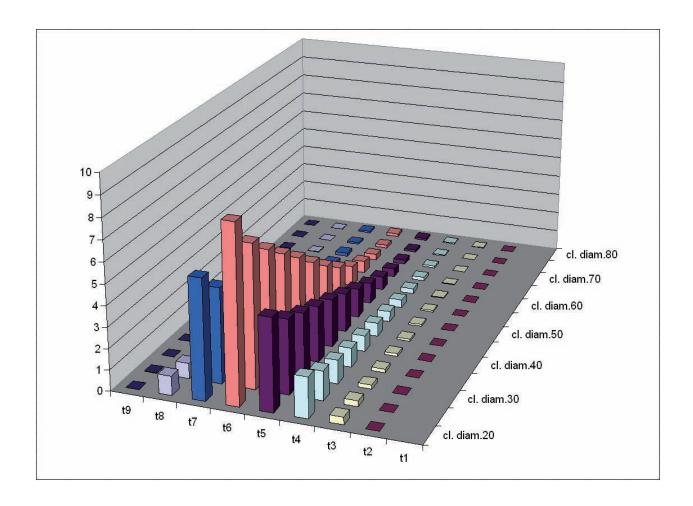


Figura 11. Abete rosso: distribuzione relativa per classe diametrica e serie tariffaria dei soggetti censiti negli inventari per cavallettamento totale dell'assestamento trentino (asse Y in valori percentuali sul totale dei soggetti censiti, pari a oltre 12 milioni e 800 mila piante).

2.3.2 Qualche osservazione sull'impatto assestamentale del nuovo sistema di tariffe

Si può affermare che, oltre alla ovvia considerazione che ora si tratta di modelli dotati di espressione matematica completa e non di insiemi di valori singolari, le nuove tariffe di cubatura presentano sostanziali e rilevanti miglioramenti rispetto alle preesistenti:

- il campo di definizione diametrico si estende da un minimo di 5 cm di diametro a 1,3 m (per tutte le specie) fino ad un diametro massimo che è di 5-10 cm superiore a quello (variabile con la specie) che fornivano le VT; si rende quindi tra l'altro possibile la determinazione del volume anche per i soggetti pre-inventariali (diametro minore di 17,5 cm) nella attuale accezione assestamentale;
- in tali intervalli le nuove tariffe sono definite per qualsiasi diametro (anche non intero) e comunque ovviamente per intervalli di 1 centimetro e non di 2 o di 5 centimetri come nelle VT;
- sono state allestite nuove tariffe anche per il Pino nero, pur con le approssimazioni relative alle curve ipsometriche di base desunte da quelle preesistenti del Pino silvestre;
- le nuove tariffe appaiono ora dotate di andamenti consoni e regolari, non interferiti da approssimazioni, errori e incongruenze di vario tipo che in precedenza le affliggevano.

Tutto ciò pur in presenza di una sostanziale continuità stereometrica tra vecchi e nuovi valori tale da ritenere non solo "indolore" ma vantaggioso il loro impatto nella realtà assestamentale trentina. Non si determineranno quindi scostamenti significativi nei riferimenti pratici e concettuali tra vecchi e nuovi valori delle masse assestamentali e dei volumi di martellata.

Il metodo di cubatura per tariffe in uso in provincia di Trento fu messo a punto in una fase storica di ricostruzione assestamentale del patrimonio boschivo provinciale e ne ha scandito gli esiti (e il successo) per oltre 50 anni. Nel nuovo impianto di pianificazione, l'approccio classico di cubatura per tariffe (attribuzione di un volume individuale ad ogni soggetto censito, sulla base della specie, della classe diametrica e dell'inquadramento tariffario particellare) sembrerà (si sottolinea il termine sembrerà, vedi par. 3.5) perdere il ruolo centrale ricoperto in passato nel processo per la determinazione della massa. Sarà invece ancora direttamente utilizzato per la determinazione del volume delle utilizzazioni che avverrà, al solito, per cavallettamento degli alberi destinati al taglio con attribuzione del volume tariffario idoneo sulla base della specie, del diametro e dell'attribuzione tariffaria di piano (eventualmente rivista con la realizzazione del nuovo piano). Si vedrà come, in relazione all'introduzione di metodi campionari basati sulla tecnica relascopica e, quindi, in assenza di rilievi di seriazioni diametriche vere e proprie, l'approccio con determinazione individuale delle masse verrà superato per passare ad un approccio di cubatura "di popolamento" (dall'area basimetrica al volume) delle fustaie9 col nuovo modello MPF (vedi oltre). Tuttavia l'abbandono dell'impianto tariffario è sostanzialmente apparente perché esso rimane ampiamente sotteso dall'approccio del modello MPF e ne genera in tutto e per tutto il comportamento estimativo.

Occorre peraltro da considerare la principale criticità dell'attuale sistema tariffario, ovvero la tendenza radicatasi nel tempo alla cristallizzazione degli inquadramenti di serie tariffaria di particella. Complici certi appesantimenti indotti sul calcolo dell'incremento col metodo del bilancio di massa, le attribuzioni di tariffa non si sono adeguatamente evolute seguendo più dinamicamente l'evoluzione crono-ipsometrica dei popolamenti forestali. All'atto della scrittura di questo contributo è all'esame una serie di alternative metodologiche che, cogliendo l'occasione dei nuovi metodi di realizzazione dei piani aziendali, portino ad una generalizzata e progressiva revisione degli inquadramenti tariffari attuali.

3 Modello di cubatura "di popolamento" MPF per le fustaie: dalla determinazione dell'area basimetrica ad ettaro alla stima delle masse

Il nuovo impianto assestamentale trentino si basa su vari aspetti innovativi tra i quali il superamento del ruolo inventariale della particella, con l'introduzione di unità inventariali interparticellari, o *strati*, più vincolate alla reale rappresentazione di caratteristiche strutturali-compositive omogenee delle proprietà. Altro aspetto riguarda l'introduzione della relascopia quale metodo di reperimento delle stime di *G*/ha negli strati. L'adozione di metodi di campionamento statistico stratificato per *prove di numerazione angolare adiametriche* (prove relascopiche adiametriche, "aree di saggio" relascopiche

⁹ Per i cedui l'approccio sarà abbastanza analogo con l'impiego dei modelli di popolamento (MPC) di Sottovia e Tabacchi

adiametriche), come più volte sottolineato, implica ovviamente l'assenza di misure diametriche individuali sui singoli soggetti delle unità campionarie e la necessità di definire un sistema di cubatura (per il passaggio alle masse) basato su approcci di tipo collettivo o "di popolamento".

Il modello MPF, che di seguito verrà illustrato, nasce per rispondere a tale logica e rappresenta un approccio pragmatico ma non privo di innovazione sul piano dendrometrico.

Importante notare che MPF è stato realizzato senza rilevare alcuna area di saggio sperimentale, ma invece recuperando e valorizzando l'immensa quantità di informazione dendrometrica residente negli archivi assestamentali provinciali e sottostante a migliaia di cavallettamenti totali su base particellare eseguiti in tutta la provincia dal '50 ad oggi.

In sostanza, MPF, pur dovendo forzatamente basarsi sui dati "collettivi" di campionamento tipici della relascopia adiametrica, fornirà comunque una stima molto accurata della massa ad ettaro che si sarebbe determinata, a parità di condizioni, applicando il consueto approccio di cubatura per sommatoria di masse arboree individuali di derivazione tariffaria. MPF perviene infatti ad una stima della massa ad ettaro esclusivamente sulla base dell'area basimetrica e di alcuni indici distributivi di tale parametro rispetto alla composizione specifica, dimensionale e all'inquadramento tariffario (preesistente o di nuova revisione).

3.1 I dati nativi o derivati del nuovo protocollo di rilievo inventariale per prove di numerazione angolare

Occorre chiarire che il nuovo protocollo inventariale è stato pianificato per restituire, come esito "nativo" dei rilievi in campo di ogni prova relascopica e per ogni soggetto "IN" (incluso nella prova per superamento della larghezza di "banda") e valutato a vista superare la soglia inventariale (diametro ad 1,3 maggiore di 17,5 cm): (a) la specie; (b) una stima a vista¹¹ dell'appartenenza del soggetto ad una delle tre "grandi classi dimensionali" (vedi oltre). Dal pregresso impianto di dati assestamentali viene inoltre desunto (c) l'indicatore di tariffa di ogni specie presente.

Per ciascuna unità campionaria sono quindi sempre derivabili i seguenti dati:

- valore stimato di G/ha;
- aliquote relative di G/ha ascrivibili alle tre "grandi" classi dimensionali (vedi oltre);
- aliquote relative di G/ha riferite alle specie presenti.

3.2 Database di costruzione del modello MPF

Il database impiegato per lo studio del modello MPF era composto oltre 10.000 casi di cavallettamento totale particellare, relativi a particelle a superficie immutata nel tempo, derivanti dall'archivio dei Piani Economici Forestali (PEF) della P.A.T.

La costanza della superficie particellare rappresenta il vincolo imprescindibile per l'ammissibilità dei dati, poiché le variabili modellizzate sono espresse per unità di superficie (per ha). Una qualunque variazione, seppur piccola, nell'estensione dell'area totale di riferimento, si sarebbe dunque tradotta in una variazione del dato unitario tra un cavallettamento e il successivo della stessa particella e di conseguenza nella introduzione di "rumore" incontrollato nei dati di base. E' bene infatti ricordare che molte delle variazioni di superficie particellare sono storicamente intervenute a confini reali sul terreno immutati della particella, semplicemente perché il dato di area è stato meglio precisato attraverso un migliore riporto dei confini su supporto GIS.

La grandezza dendrometrica sottoposta a modellizzazione è stata la massa ad ettaro (V/ha) da intendersi quale variabile dipendente (o in stima) del modello.

In sintonia con i dati di output (nativi o derivati) del nuovo protocollo inventariale, nel database, per ogni "caso", sono stati individuati o derivati:

- la massa ad ettaro stimata con l'abituale approccio individuale tariffario, specie, classe diametrica, tariffa, volume tariffario, numero di soggetti cavallettati;
- l'area basimetrica totale ad ettaro degli alberi di diametro superiore a 17,5 cm;

Per stima a vista si intende quella attuata dagli operatori opportunamente addestrati, eventualmente supportati, nei casi dubbi, da controlli sul diametro del soggetto attuati dall'assistente di rilievo.

- la sua ripartizione relativa nelle tre grandi categorie dimensionali delle "piante piccole" (alberi con diametro da 17,5 cm fino a 27,4 classi diametriche 20 e 25), delle "piante medie" (alberi con diametro da 27,5 cm fino a 47,4 classi diametriche 30, 35, 40 e 45) e delle "piante grosse" (alberi con diametro uguale o maggiore di 47,5 cm classi diametriche 50, 55, 60, 65, 70, 75 e 80 e oltre);
- la ripartizione relativa di G/ha rispetto alle specie forestali presenti in riferimento a tutte le principali specie di interesse assestamentale (in assenza della specie aliquota pari a zero);
- gli indici tariffari assegnati in sede di pianificazione alle specie forestali presenti nella particella.

E' da notare l'ovvia convergenza tra dati nativi o derivabili di output del processo inventariale di campionamento e i dati di base del modello, dai quali (vedi di seguito) derivano le variabili esplicative operative del modello MPF.

3.3 Variabili esplicative del modello MPF

L'individuazione delle variabili esplicative *operative* del modello *MPF* ha preso le mosse dal sequente approccio concettuale.

Il modello ha l'obiettivo di individuare il rapporto funzionale specifico locale tra G/ha e V/ha.

Tale rapporto è stato ritenuto essere (principalmente) influenzato:

- 1) sempre e comunque: dall'area basimetrica totale;
- 2) a parità di area basimetrica, composizione specifica e di tariffa applicata: dalla dimensione media dei soggetti presenti (maggiore è tale dimensione maggiore sarà la massa ad ettaro);
- 3) a parità di area basimetrica, dimensione media e di tariffa: in funzione della composizione specifica (in quanto determinate specie presentano masse mediamente maggiori di altre);
- 4) a parità di area basimetrica, dimensione media e composizione specifica: in funzione della tariffa applicata.

Si è poi trattato di tradurre tale tipo di approccio in variabili esplicative numeriche sintetiche in grado di interpretarlo sulla base dei dati nativi o derivati di output del campionamento relascopico e dei corrispondenti valori dendrometrici del database.

Al fine di ottimizzare la capacità predittiva del modello, includendo tutte le informazioni necessarie, ma riducendo il più possibile il numero delle variabili indipendenti coinvolte, i dati sopra elencati sono stati quindi ulteriormente manipolati al fine di ottenere appunto indici sintetici secondari successivamente impiegabili come variabili esplicative. Tali indici sono stati rispettivamente denominati P_s , B_d e I_t

3.3.1 P_s: indice di Potenzialità stereometrica di specie

L'indice di *potenzialità stereometrica di specie* esprime la capacità delle specie presenti di produrre una massa più o meno elevata a parità delle altre condizioni di cui al precedente paragrafo (condizione 3). Per il calcolo dell'indice P_s sono stati utilizzati i valori di area basimetrica percentuali riferiti alle specie presenti.

Considerando un soggetto di 35 centimetri di diametro, inquadrabile nella in tariffa 6, che, in larga media, sono le caratteristiche medie dei soggetti arborei in Trentino (archivio PEF/P.A.T.), sono stati confrontati i corrispondenti valori tariffari di volume per tutte le principali specie assestamentali. Le specie che, in tale situazione, danno origine a soggetti di massa più o meno analoga sono state riunite in gruppi aventi la stessa "potenzialità stereometrica". Ad ogni gruppo è stato poi attribuito un valore operativo di "potenzialità stereometrica".

Si è potuto constatare che:

- Abete rosso e Abete bianco formano un gruppo a se stante con massa del soggetto citato intorno al metro cubo;
- tutti i Pini e il Faggio (cui sono assimilate le "Altre latifoglie") appartengono ad un gruppo con minore potenzialità, pari a circa 0,9 m³;
- il Larice dimostra la minore potenzialità stereometrica di tutte le principali specie

assestamentali, con circa 0,8 m³.

Si è quindi stabilito di assegnare ad ogni specie il rispettivo valore di riferimento di potenzialità stereometrica di gruppo pari rispettivamente a 1,0 - 0,9 e 0,8.

Noti i valori di ripartizione relativa dell'area basimetrica ad ettaro espressi in percentuale attribuibili alle specie presenti, ricavati dai dati di cavallettamento di ogni singolo "caso" del database (cavallettamento di particella), il valore P_s di sintesi è stato così determinato:

(6) $P_{s} = (G_{\text{MAR}} + G_{\text{MAB}}) \times 1.0 + (G_{\text{MPS}} + G_{\text{MPN}} + G_{\text{MPC}} + G_{\text{MFA}} + G_{\text{MAL}}) \times 0.9 + G_{\text{ML}} \times 0.8$ I valori che P_{s} può assumere variano nell'intervallo 80 - 100, dove i valori pari a 80 corrispondono

I valori che P_s può assumere variano nell'intervallo 80 - 100, dove i valori pari a 80 corrispondono a popolamenti composti esclusivamente da Larice (scarso potenziale stereometrico) e i valori massimi (100) indicano popolamenti composti esclusivamente da Abete rosso e/o Abete bianco (elevato potenziale stereometrico). I valori intermedi di P_s individuano popolamenti caratterizzati da variabilità compositiva, con risultante potenzialità stereometrica intermedia (Fig.12).

In Figura 13 è riportata la variabilità sperimentale complessiva della massa per ettaro al variare del valore di P_s . Nonostante il grafico non enuclei isolatamente la variazione della variabile dipendente (V/ha) indotta da P_s (tutte le altre variabili non "spiegate" considerando solo P_s apportano il loro contributo di variabilità) appare evidente una certa influenza positiva di P_s su V/ha (se aumenta P_s la massa, tendenzialmente, aumenta).

ID	chiave	Gtot/HA	C%AR	G%AB	G%L	G%PS	G%PN	G%PC	G%FA	G%AL	IPSS
1	1002	31.15	15	2	15	68	0	0	0	0	90.16
2	1004	25.40	36	9	18	37	1	0	0	0	92.67
3	1005	37.67	29	4	6	61	0	0	0	0	9274
4	1006	35.85	25	11	33	31	0	0	0	0	90,30
5	1006	43.50	29	10	31	29	0	0	0	0	90.82
6	1007	32.10	45	47	7	1	0	0	0	0	98.49
7	1007	33,40	47	45	7	1	0	0	0	0	98.45

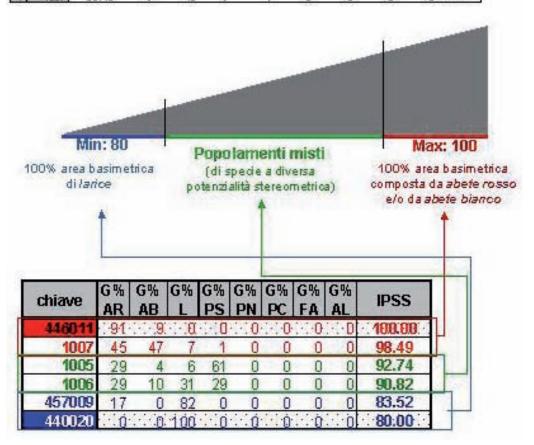


Figura 12. Esemplificazioni del calcolo di P_s in alcuni casi reali. Formazione dei valori di P_s nelle varie casistiche di composizione del soprassuolo (nelle tabelle P_s è denominato "IPSS").

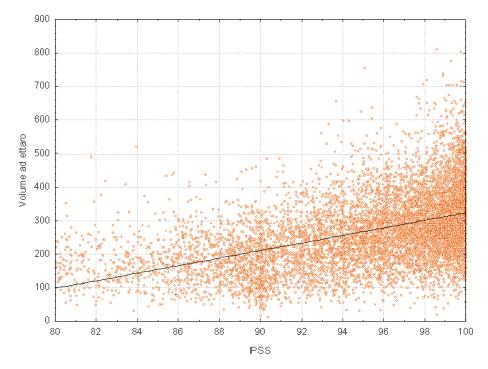


Figura 13. Variazione di V/ha al variare di P_s in tutti i casi di dbase considerati. L'influenza di P_s è evidente ma fortemente interferita dall'influenza di tutte le altre variabili esplicative di MPF non considerate (nel grafico P_s è identificato come "IPSS").

3.3.2 B_d: indice di Baricentro dimensionale

L'indice B_d è stato ideato per interpretare la condizione 2 di cui al precedente paragrafo 3.2. e cioè quella che prevede che a parità di area basimetrica, composizione specifica e di tariffa applicata, V/ha dipenda dalla dimensione media dei soggetti presenti (maggiore è tale dimensione, maggiore sarà la massa ad ettaro).

 B_{a} , agendo sui valori di ripartizione relativa dell'area basimetrica ad ettaro nelle grandi classi dimensionali delle piante piccole, medie e grosse (vedi par. 3.1), identifica in un singolo indice la posizione del "centroide" basimetrico del popolamento, collocandolo nell'intervallo 0-1.

Dopo aver suddiviso l'intervallo 0 - 1 in tre intervalli uguali rappresentativi delle tre classi dimensionali, per ogni intervallo è stato scelto il valore centrale come indicatore di classe. Noti i valori di ripartizione relativa reale di area basimetrica riferiti alle piante piccole, medie e grosse, B_d viene derivato di conseguenza in ogni singolo caso sommando i prodotti di tali valori per il valore centrale di classe in accordo con la formula:

(7)
$$B_d = G_P \times 0.167 + G_M \times 0.5 + G_G \times 0.833$$

L'indice così costruito varia nell'intervallo 0,167-0,833. Minore è il valore assunto da B_d e maggiore è la prevalenza nel popolamento di soggetti appartenenti alla grande classe dimensionale delle piccole (diametro 20-25 cm). Per contro, più il valore di B_d si avvicina al massimo, la preponderanza nel popolamento di piante "grosse" (50-80 cm e oltre) diventa sempre più accentuata. Ovviamente, i valori intermedi assunti da B_d non corrispondono a popolamenti composti esclusivamente da soggetti di classe dimensionale media, ma composti da piante appartenenti in varia misura anche a due o tre grandi classi dimensionali (Fig. 14).

In Figura 15 è riportata la variabilità sperimentale complessiva della massa per ettaro al variare del valore di B_d . Nonostante il grafico non enuclei isolatamente la variazione della variabile dipendente (V/ha) indotta da B_d (tutte le altre variabili non "spiegate" considerando solo B_d apportano il loro contributo di variabilità) appare evidente un'influenza positiva di B_d su V/ha (se aumenta B_d la massa, tendenzialmente, aumenta).

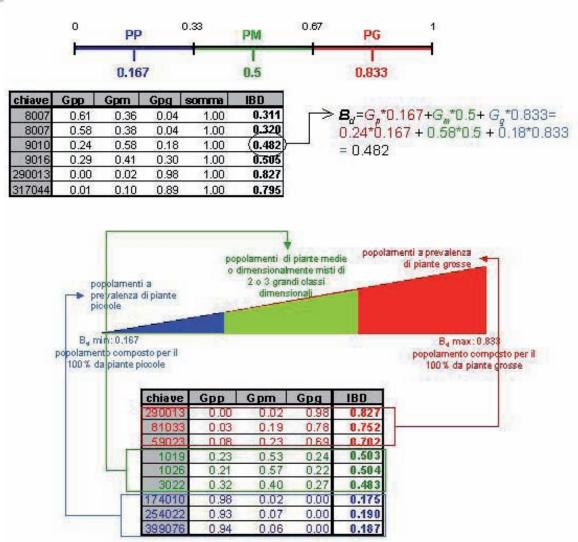


Figura 14. Esemplificazioni del calcolo di B_d in alcuni casi reali. Formazione dei valori di B_d nelle varie casistiche dimensionali del soprassuolo.

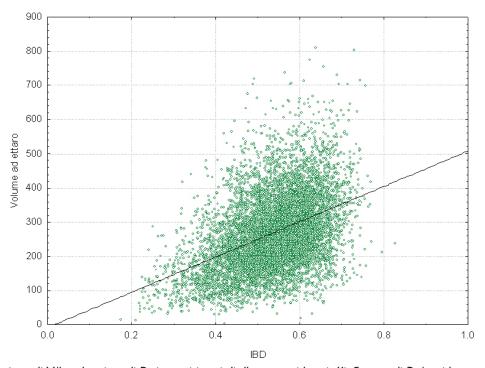


Figura 15. Variazione di V/ha al variare di B_d in tutti i casi di dbase considerati. L'influenza di B_d è evidente ma fortemente interferita dall'influenza di tutte le altre variabili esplicative di MPF non considerate (nel grafico B_d è identificato come "IBD").

3.2.2 I_t : Indice tariffario (a ponderazione basimetrica)

L'indice I_t è stato ideato per interpretare la condizione 4 di cui al precedente paragrafo 3.2. e cioè quella che prevede che a parità di area basimetrica, composizione specifica e "baricentro dimensionale", V/ha dipenda dalla "tariffa media" dei soggetti presenti (minore è tale indicatore maggiore sarà la massa ad ettaro). Si parla di "tariffa media" (intesa come media "a ponderazione basimetrica" degli indicatori di tariffa) perché non sempre la tariffa applicata risulta costante per tutte le specie presenti nella particella.

L'indice I_t fornisce una pseudo-indicazione della fertilità della particella, tenuto conto di tutte le specie presenti. L'indice I_t si ottiene ponderando l'indicatore di tariffa delle specie presenti in base alla loro ripartizione relativa in termini di area basimetrica.

Per ogni particella, noti i valori di area basimetrica relativi delle specie costituenti il popolamento e il corrispondente indice tariffario desunto dai dati PEF, l'indice *I*, sarà pari a:

(8)
$$I_t = (G_{AR} \times I_{AR}) + (G_{AB} \times I_{AR}) + (G_L \times I_L) + (G_{PS} \times I_{PS}) + (G_{PN} \times I_{PN}) + (G_{PC} \times I_{PC}) + (G_{FA} \times I_{FA}) + (G_{AL} \times I_{AL}) + (G_{PS} \times I_{PS}) +$$

dove:

 G_n è l'area basimetrica relativa delle specie presenti e I_n è il corrispondente indice tariffario. L'indice I_n varia all'interno dell'intervallo 1-9 (Fig.16).

In Figura 17 è riportata la variabilità sperimentale complessiva della massa per ettaro al variare del valore di I_{t} . Nonostante il grafico non enuclei isolatamente la variazione della variabile dipendente (V/ha) indotta da I_{t} (tutte le altre variabili non "spiegate" considerando solo I_{t} apportano il loro contributo di variabilità) appare evidente un'influenza negativa di I_{t} su V/ha (se aumenta I_{t} , la massa, tendenzialmente, diminuisce). Gli allineamenti verticali di valori corrispondono ovviamente a situazioni ove nella particella considerata esisteva una sola specie oppure dove tutte le specie presenti avevano lo stesso indicatore tariffario.

3.4 Struttura del modello MPF

chiave	GAR	Tar _{AR}	GAH	Taras	GL	TarL	Gres	Taries	GIW	Тапъ	Gree	Tariro	GHA	Tarea	GAL	Tara	IT
81033	0.12	3	0.00	0	0.88	2	0.00	0	0.00	0	0.00	.0	0.00	0	0.00	0	2.1
128074	0.91	2	0.02	2	0.07	2	0.00	7	0.00	0	000	7	0.00	0	000	0	2.0
200002	0.57	5	0.00	0	0.39	3	0.02	7	0.02	7	0 00	0	0.00	0	0.00	0	4.3
200025	0.44	5	0.33	5	0.18	5	000	5	0.00	0	0 00	0	0.05	5	0.00	5	5.0
202002	0.35	- 6	0.00	6	0.64	4	0.00	8	0.00	0	000	0	0.00	8	000	8	4.7
202020	0.83	5	0.01	5	0.16	5	0.00	0	0.00	0	0 00	0	0.00	0	000	0	5.0
12038	0.09	8	0.00	0	0.09	8	0.79	8	0.03	8	0 00	0	0.00	8	000	0	8.0
13004	0.02	9	0.00	9	0.00	9	0.89	9	0.06	9	0 00	.0	0.00	0	0.02	9	9.0
15006	0.19	7	0.26	7	0.19	7	021	9	0.00	0	0 00	0	0.15	8	000	8	7.6
15026	0.06	7	0.00	7	0.06	7	0.72	9	0.00	0	0 00	0	0.14	8	0.02	8	8.6
15034	0.10	7	0.03	7	0.06	7	0.72	8	0.00	0	00.0	0	0.08	8	0.02	8	7.8

Figura 16. Esemplificazioni del calcolo di I in alcuni casi reali. (Nella tabella I è identificato come IT).

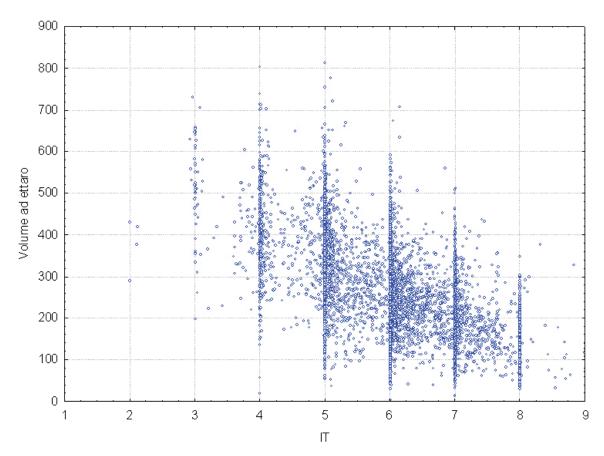


Figura 17. Variazione di V/ha al variare di I_t in tutti i casi di dbase considerati. L'influenza di I_t è evidente (all'aumentare di I_t V/ha diminuisce) ma fortemente interferita dall'influenza di tutte le altre variabili esplicative di MPF non considerate (nel grafico I_t è identificato come "IT").

Per la costruzione del modello MPF è stato utilizzato un approccio modellistico di regressione multipla, includendo nel modello base come variabili esplicative G/ha, P_s , B_{dr} , It, nonché tutte le interazioni possibili di primo (es. $\text{var}_1^*\text{var}_2$) e secondo grado (es. $\text{var}_1^*\text{var}_2^*\text{var}_3$) delle quattro variabili primarie. Gli algoritmi di regressione determinano la struttura dei coefficienti di tutti i modelli possibili con tale struttura base. Una tecnica di selezione, detta di selezione del *best subset*, individua poi il modello composto dal sottoinsieme di tutte le variabili predittrici possibili (senza ridondanze) che riesce a fornire le migliori stime della variabile dipendente (V/ha) in termini di statistica " R^2 adjusted". L'indicatore interpreta l'aliquota di variabilità "spiegata dal modello" in termini ancora più conservativi del semplice R^2 , tenendo conto la diminuzione dei "gradi di libertà" che si verifica all'aumentare delle variabili predittrici incluse nel modello.

La funzione di regressione selezionata alla fine del processo è risultata la seguente:

(9)
$$V = b_0 + b_1 G + b_2 G P_s + b_3 G P_s I_t + b_4 G P_s B_d$$

dove:

$$b_0 = -1,94605$$
, $b_1 = -0,72941$, $b_2 = 0,17240$, $b_3 = -0,01295$, $b_4 = 0,02914$.

Qualora, ciò che è lo stesso, l'indice P_s , venisse espresso in termini relativi nell'intervallo 0 –1 e non in percentuale, i coefficienti del modello diventerebbero rispettivamente:

$$b_0 = -1,94605$$
, $b_1 = -0,72941$, $b_2 = 17,240$, $b_3 = -1,295$, $b_4 = 2,914$

3.5 Capacità interpretativa del modello MPF

Nell'analizzare tale aspetto è meglio sottolineare la natura dei dati che MPF è destinato a interpretare. Ribadendo quanto già sottolineato al par. 3, MPF, pur con dati di partenza collettivi (*G*/ha e sue ripartizioni relative per specie, dimensione e tariffa di riferimento) e non quindi per sommatoria di dati individuali, in pratica, *simula* le stime di massa che si sarebbero ottenute con quest'ultimo approccio. Non si sta quindi parlando di interpretazione dei veri (ignoti) valori di massa unitaria manifestati dalle particelle coinvolte, ma delle stime di questi, come peraltro sono ovviamente tutti i dati assestamentali di massa. Tali stime sono ottenute tramite modelli (le tariffe) che, data la sua derivazione, sono sottostanti anche ad MPF, ma che il modello interpreta secondo un approccio che non prevede la conoscenza di veri e propri piedilista di censimento, ma semplicemente di densità unitarie di area basimetrica ascrivibili alle varie classi arboree considerate.

La differenza non è irrilevante dato che apre la possibilità di introdurre il campionamento e la relascopia quale approccio campionario con ovvie conseguenze sul costo degli inventari.

L'indice R^2 (adjusted) di MPF è pari addirittura a 0,9986. Ciò significa che il modello interpreta quasi il 100% della variabilità dei dati sperimentali, valore molto elevato e assolutamente inusuale negli studi di regressione.

La distribuzione dei valori di massa stimati sui valori osservati di *V* (Fig.18) mostra un allineamento regolare e non disperso intorno alla retta "identità" (a 45°), indice di elevata qualità del modello selezionato. I residui (variabilità non spiegata dal modello) rispetto ai valori osservati di *V* (Fig.19) si dispongono uniformemente e simmetricamente lungo tutto l'intervallo di validità, con una media con segno pari a circa zero e una media dei residui senza segno pari a 3,136 m³/ha. L'errore di stima in compiuto dal modello (Fig. 20) nel 50% dei casi non supera 2,46 m³/ha (mediana), nel 58% dei casi è inferiore a 3,14 m³/ha (media) e nel 95% dei casi non è maggiore di 8,26 m³ ad ettaro. Delle quattro variabili esplicative solo *G*/ha entra nel modello tal quale, mentre le altre tre variabili esplicative (indici di cui ai precedenti paragrafi) contribuiscono a spiegare la variabile dipendente in interazione con le altre. Particolarmente importante è risultata tale introduzione dei termini relativi alle interazioni (di secondo e terzo grado), senza le quali i modelli risultanti presentavano una distribuzione dei residui non omogenea avente una caratteristica forma di mezzaluna con la concavità verso l'alto. Vale a dire che senza l'apporto esplicativo delle interazioni i modelli regressivi tendevano a sovrastimare per volumi elevati e per volumi molto modesti, mentre avevano la tendenza alla sottostima per i valori di volume intermedio (più freguenti).

Ovviamente l'area basimetrica G/ha rappresenta la variabile esplicativa più importante di V/ha, ma senza il contributo esplicativo degli indici P_s , B_d e I_t porterebbe a risultati di stima del tutto insoddisfacenti.

3.6 Alcune considerazioni sull'impiego operativo di MPF

Ci si potrebbe chiedere se un modello costruito su relazioni studiate per consistenti collettivi arborei (particelle) possa presentare problematiche di impiego in riferimento alla sua applicazione a livello di unità campionarie (Fig. 21). Prove effettuate anche da altri studiosi, cui MPF è stato sottoposto per una valutazione critica¹¹, non sembrano evidenziare apparenti effetti di distorsione anche in situazioni molto distanti dalla media della dotazione di massa dei boschi trentini. Ovviamente, applicazioni sulle singole unità campionarie di MPF per passare dai dati unitari di *G* alle rispettive masse (stimabili quindi per ogni specifica unità) mostreranno la stessa variabilità campionaria dei dati di *G* o meglio una variabilità appena superiore, traducibile in due tre punti di CV, secondo le sperimentazioni reali effettuate su alcuni nuovi piani trentini già realizzati (Foresta demaniale provinciale di Cadino). E' chiaro che nella formazione delle stime di massa media di strato, queste deriveranno dalla media di tutti i valori delle unità campionarie di strato.

¹¹ Si ringrazia il prof. Bernardo Hellrigl, già ordinario di assestamento forestale dell'Università di Padova, per l'apporto critico a tale riguardo e per le simulazioni di impiego del modello da lui effettuate.

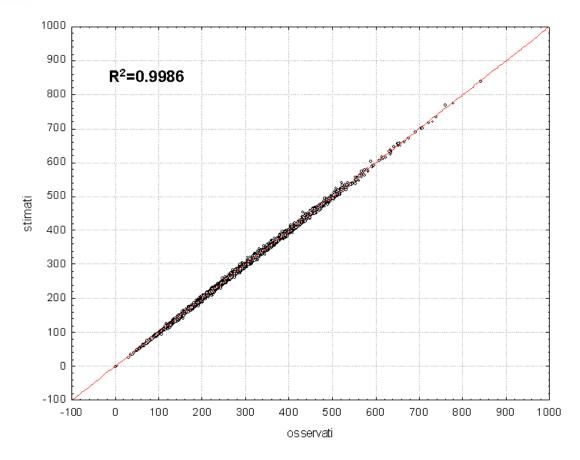


Figura 18. Valori di massa osservati e stimati dal modello MPF (m³/ha).

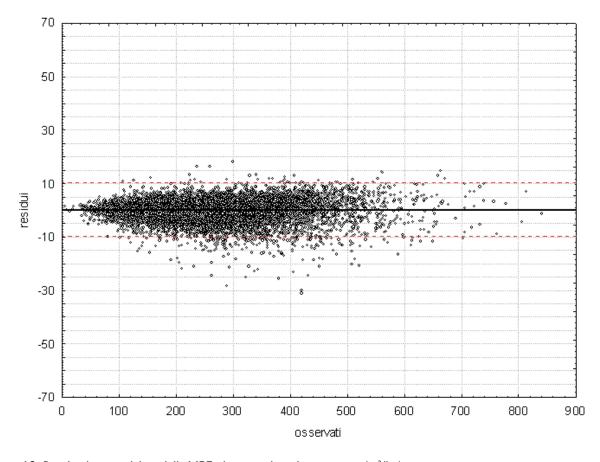


Figura 19. Residui di stima del modello MPF al variare dei valori osservati (m³/ha).

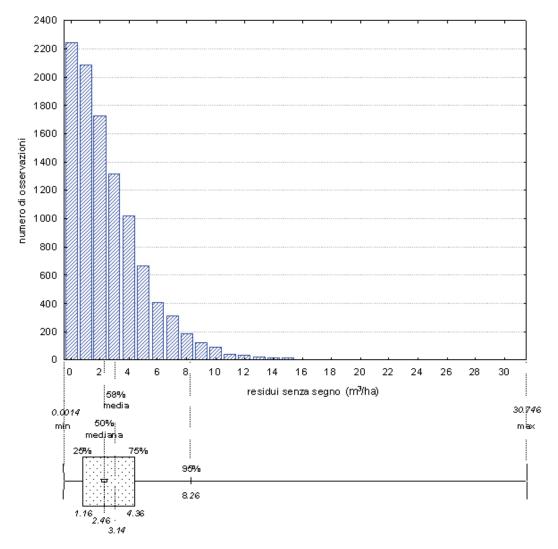


Figura 20. Distribuzione statistica dei residui sui valori osservati delle stime attuate dal modello MPF.

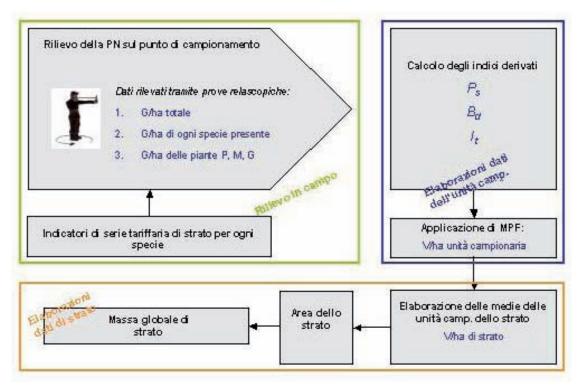


Figura 21. Flusso delle fasi di raccolta dei dati e impiego del modello MPF nelle nuove procedure assestamentali trentine.

Altro aspetto che ai più non sarà certamente sfuggito è il fatto che MPF, essendo stato costruito su migliaia di piedilista di cavallettamento "storici", sottende ovviamente il vecchio impianto tariffario trentino con il suo specifico determinismo dendrometrico. Si è visto però ampiamente che il nuovo impianto tariffario (modelli MV1) non rappresenta altro che un'interpretazione matematica del vecchio, con regolarizzazione delle sue anomalie, in un quadro di sostanziale immutabilità dei determinismi dendrometrici che le vecchie tariffe sottendevano. La circostanza appare quindi ininfluente sulla struttura finale del modello MPF. Anzi, semmai, se si fossero potute ricalcolare le masse dell'intero database con i nuovi modelli MV1, è probabile che, a struttura finale praticamente immutata del modello MPF, la sua capacità di adattamento ai dati sarebbe stata addirittura superiore a quella già più che soddisfacente riscontrata.

Circa gli inquadramenti tariffari che l'applicazione del modello MPF impone, non siamo logicamente in condizioni diverse rispetto al passato. MPF sarà in grado di "ereditare" inquadramenti tariffari esistenti con riferimento alla particella d'appartenenza dell'unità campionaria, soluzione pragmatica di transizione che sarà probabilmente adottata in sede di prima applicazione. Potrà peraltro accettare nuovi inquadramenti di revisione dei preesistenti, soluzione che appare indifferibile affrontare secondo approcci metodologico-procedurali uniformi (attualmente allo studio) in molte realtà assestamentali trentine (vedi par. 2.3.2).

Il modello MPF costituisce, di fatto, un ingranaggio piuttosto importante della nuova pianificazione trentina. Ciò sia in relazione all'approccio dendrometrico innovativo, pur se pragmatico e particolare, sia in relazione alla circostanza che l'immensa mole di dati della pianificazione è stata sicuramente valorizzata e non dispersa con l'ingresso di nuovi metodi assestamentali. Peraltro tale soluzione non è probabilmente praticabile in realtà a scarsa tradizione assestamentale che non dispongano un consistente "retroterra" d'applicazione del cavallettamento totale su base particellare.

4 MPC¹²: modelli di cubatura "di popolamento" per i Cedui del Trentino

Per completezza si riportano in questo paragrafo i dati salienti dei modelli "di popolamento" per i principali tipi dei boschi cedui del Trentino (Sottovia L., Tabacchi G., 1996), poiché nel nuovo impianto assestamentale si ricorrerà a tali modelli per la stima su base campionaria della massa dei cedui trentini appartenenti a proprietà assestate.

Si tratta di modelli derivati da un vasto impianto di aree di saggio sperimentali (777), di 200 metri quadrati l'una, realizzate a metà degli anni '80 in tutto il Trentino, nell'ambito della proprietà boschiva sia pubblica sia privata, governata a ceduo. In tali aree è stata rilevata la massa (fino ad un diametro di svettamento di 3 cm) dei polloni, delle matricine e di eventuali conifere, da 2,5 cm di diametro ad 1,3 m in su. Furono rilevate altezze sufficienti a costruire una curva ipsometrica locale dei polloni e inoltre l'altezza dei due¹³ polloni più grossi ogni 100 m² (con esclusione di matricine e conifere). Successivamente, raggruppate le informazioni per i cinque tipi principali di formazione a ceduo che sono state ritenute tipologicamente differenziabili, furono studiate le relazioni tra G (ad ettaro) e altezza dominante (H_{ol}), da una parte, e V (ad ettaro) dall'altra (stimato con le tavole a doppia entrata delle specie a ceduo dell'Inventario Forestale Nazionale '85), come variabile dipendente. In particolare si studiò la capacità di stima del modello:

$$(10) V = b_o + b_t GH_d$$

Gli esiti del lavoro sono riportati nella Tabella 7 e nella Figura 22 per le 5 categorie tipologiche

¹³ La definizione canonica di Altezza dominante è quella che fa riferimento "alla media dell'altezza dei 100 soggetti di diametro maggiore ad ettaro". Su base campionaria è corrente l'interpretazione di *Hd* come "aspettativa dell'altezza del soggetto più grosso ogni 100 metri quadrati". Nell'applicazione pratica dei modelli MPC si è ritenuto che, in ceduo, considerata l'area di esplorazione circostante il punto di campionamento mediamente realizzata col relascopio, il parametro di ingresso *Hd* possa tradursi nella misura dell'altezza dei due-tre polloni più grossi entro una distanza di 8 metri dal punto di campionamento e nel successivo calcolo del valor medio di tali altezze.

¹² La denominazione MPC (modelli collettivi per i cedui) non è originale ma è stata introdotta per omogeneità nella nomenclatura del nuovo assestameto trentino.

principali di cedui trentini.

Si noti come, in larghissima media e ai fini di stime sommarie, nel campo di variabilità presumibilmente più ricorrente delle variabili G (ad ettaro) e H dominante (H_d), i modelli forniscono stime di V/ha non molto dissimili dal prodotto dell'area basimetrica ad ettaro per la metà dell'altezza dominante, funzione che si potrebbe adottare ai fini di stime, appunto, orientative.

Per ogni altro approfondimento in relazione all'applicazione dei modelli MPC si rinvia al lavoro originale più volte citato.

Tabella 7. Equazioni di stima e indicatori di performance di adattamento dei modelli MPC ai valori sperimentali. Estratto da Sottovia L., Tabacchi G., 1996.

Modello	coefficienti (b)	varianza residua (S ² _{res})	matrice delle varianze e covarianze dei coefficienti V (b)			
cedui puri di faggio			_	_		
$Y = b_{11} + b_{21} X$	$b_1 = 10,2224$ $b_2 = 0,4708$	1,08339	4,27334	-1,53719x10 ⁻²] 7,60244x10 ⁻⁵]	0,99	
cedui misti di faggio e carp	ino nero					
$Y = b_{12} + b_{22} X$	$b_1 = 4,0000$ $b_2 = 0,4678$	0,88999	4,35915	-2,02674x10 ⁻²]	0,98	
cedui mesofili di castagno e	e robinia					
$Y = b_{13} + b_{23} X$	$b_1 = -2,9641$ $b_2 = 0,5085$	1,33606	[14,25214	-4,95924x10 ⁻²]	0,98	
cedui misti termofili						
$Y = b_{14} + b_{24} X$	$b_1 = 5,0100$ $b_2 = 0,4503$	0,63987	0,35072	-2,34456x10 ⁻³] 2,72029x10 ⁻⁵	0,98	
ormazioni riparie			_			
$Y = b_{15} + b_{25} X$	$b_1 = 21,0024$ $b_2 = 0,3919$	2,13075	[472,27334	-1,12729x10 ⁰]	0,98	
con $X = $ area bas. (ad etta $Y = $ volume (ad ettaro	aro) x altezza dominante [m²	x m]				

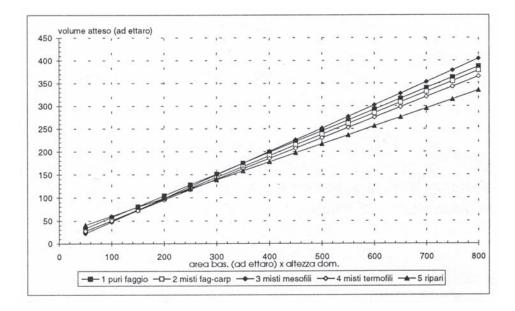


Figura 22. Andamenti dei modelli di stima MPC della massa ad ettaro dei cedui trentini. Estratto da Sottovia L., Tabacchi G., 1996.

5. Riepilogo: lo studio in sintesi

Come fase collaterale alla revisione dei metodi dell'assestamento aziendale in provincia di Trento, sono stati messi a punto nuovi modelli stereometrici sia per la stima della massa di singoli soggetti sia di collettivi arborei.

Il sistema delle tariffe trentine (elaborato da Cristofolini, negli anni '50, per le principali specie arboree di interesse assestamentale) fornisce il volume cormometrico di un soggetto arboreo di dato diametro per ognuna di 5-9 serie tariffarie (secondo la specie) che sottendono altrettante curve ipsometriche "guida" del rapporto h/d.

Tale impianto non è espressione di un sistema di funzioni matematiche e le serie stereometriche tariffarie furono determinate "per valori singolari" sulla base delle citate curve ipsometriche di inquadramento derivanti da dati rilevati in campo (perequati soggettivamente) cui furono associati i volumi cormometrici (fusto + rami fino a 7 cm in punta) desunti dalle tavole di massa cormometrica della raccolta tedesca di Grundner-Schwappach (GS).

L'assenza di funzioni matematiche interpretative delle curve del volume e degli andamenti ipsometrici non facilita l'integrazione dei dati tariffari in impianti informatici di elaborazione degli esiti inventariali. Inoltre riduce i limiti dimensionali arborei di possibile utilizzo vincolandoli al campo di validità inizialmente stabilito (diametro minimo 15 cm, massimo 80) e agli intervalli nativi di evidenziamento dei dati (2-5 cm), se non tramite interpolazione lineare.

Le nuove esigenze implicavano quindi la necessità di disporre di più adeguati e flessibili strumenti stereometrici che peraltro garantissero una sostanziale continuità di riferimento volumetrico rispetto al passato, attraverso perequazioni il più possibile aderenti agli andamenti evidenziati dal sistema tariffario esistente.

In una prima fase è stato messo a punto un modello generale ("MV2") a doppia entrata, v = f(d, h), per ognuna delle principali specie di interesse assestamentale, perequando l'intero insieme di dati singolari tariffari (triplette d, h, v - di derivazione GS - per tutte le serie tariffarie di ciascuna specie considerate unitariamente) e quelli "intermedi" ed "esterni" al campo ipso-diametrico (rispetto ai precedenti) reperiti nelle corrispondenti tavole GS stesse. Tali modelli forniscono appunto la stima del volume di un albero (v) in base al suo diametro ad 1,3 m (d) e all'altezza (h), mediante una struttura funzionale del tipo $v = a \times (d - d_0)^{-b} \times h^{-c}$, reperibile in letteratura come una tra le più utilizzate in Europa per molte specie.

La struttura base del modello è stata integrata con la costante d_0 che rappresenta il diametro a 1,3 m per il quale il diametro alla ceppaia non supera i 7 cm, con conseguente azzeramento del volume cormometrico anche per la frazione di fusto compresa tra 1,3 m e la ceppaia.

Il valore di d_0 , diverso per le latifoglie (4,0 cm) e per le conifere (3,7 cm), è stato individuato sulla base di modelli del rapporto d a 1,3 m / diametro della ceppaia, elaborati nel progetto IFNI '85. Le stime ottenibili con i modelli MV2 forniscono quindi valori di volume cormometrico congruenti fino al diametro minimo a 1,3 m pari a d_0 .

In una seconda fase sono state attuate le perequazioni delle curve ipsometriche guida del rapporto h / d del vecchio impianto tariffario, in maniera da regolarizzarne e migliorarne l'andamento (interferito anche da banali problemi di approssimazione dei valori), cercando inoltre, per quanto ritenuto legittimo, di estenderne i limiti di validità, prevalentemente in basso.

In una terza e ultima fase, sulla base dei modelli di stima a doppia entrata del volume e delle nuove funzioni ipsometriche ottenute, sono state ridefinite le serie stereometriche tariffarie, estendendone il campo di definizione diametrico fino al citato diametro di azzeramento, per quanto riguarda il limite inferiore, e, di 5-10 centimetri, per quanto riguarda il diametro massimo superiore preesistente. Sono state così definitivamente approntate le Nuove Tariffe di cubatura per le principali specie di interesse assestamentale del Trentino (modelli MV1).

Il nuovo impianto assestamentale trentino comporta la ridefinizione del ruolo inventariale della particella, con l'introduzione di unità inventariali interparticellari (strati) più vincolate alla reale

rappresentazione di caratteristiche strutturali-compositive omogenee. Inoltre, perseguendo vantaggi sul piano dei costi inventariali e dell'efficienza campionaria, è stato introdotto l'impiego della relascopia quale metodo di reperimento delle stime di *G*/ha negli strati.

Secondo uno schema di campionamento dimensionato di volta in volta sull'estensione degli strati, individuati e georeferenziati a priori nel complesso assestamentale, vengono realizzate prove di numerazione angolare (PNA o prove relascopiche) per determinare la stima del valore di *G*/ha, le aliquote relative di tale valore ascrivibili alle tre "grandi" classi diametriche (delle piante *piccole*, *d* a 1,3 m tra 17,5-27,4 cm, *medie*, 27,5-47,4 cm, *grosse*, 47,5 cm e oltre) ed infine la ripartizione relativa di *G*/ha per le principali specie di interesse inventariale presenti. Tale ripartizione in "grandi" classi dimensionali (attribuite "a vista", senza controllo diametrico, a ciascun soggetto "in" di ogni PNA) corrisponde anche al tentativo di traslazione e adattamento di criteri e metodi di interpretazione strutturale automatica su base inventariale, diffusi in alcune realtà francesi (Asael F. et Al., 1999). Sul piano operativo, ai dati citati in precedenza, aventi derivazione inventariale pura, è sempre associabile l'indicazione di serie tariffaria per ogni specie, desumibile dall'impianto assestamentale pregresso a livello di particella di collocazione delle PNA.

Sulla base degli esiti inventariali e della citata "contestualizzazione" tariffaria si è ritenuto di prevedere e sperimentare la possibilità di un approccio alternativo a quello stereometrico individuale per la quantificazione delle masse di strato, peraltro stimolato dalla volontà di sfruttare i vantaggi sul piano dei costi inventariali e dell'efficienza campionaria che l'uso della relascopia in versione "nativa" (adiametrica) implica e di non prevedere la raccolta di informazione ipsometrica su soggetti campione, almeno in una prima fase di applicazione.

Tale approccio è stato realizzato mettendo a punto un modello regressivo empirico tra G e V (dati per ettaro) sulla base dell'imponente archivio di cavallettamenti totali particellari dell'assestamento trentino (oltre 10.000 casi).

In tale contesto il modello regressivo messo a punto (denominato MPF) si è dimostrato in grado di fornire una stima molto accurata del volume tariffario ad ettaro di particella, sulla base di una struttura "esplicativa" come la seguente: $V = b_0 + b_1 G + b_2 G P_s + b_3 G P_s I_t + b_4 G P_s B_d$, dove G è l'area basimetrica per ettaro, b_0 , b_1 , b_2 , b_3 e b_4 sono i coefficienti di regressione e P_s , I_t , B_d sono indici integralmente derivati dai dati di campionamento relascopico per la cui esplicazione si vedano i paragrafi 3.2. La variabile dipendente è naturalmente il volume ad ettaro V (m³).

Il modello si è dimostrato in grado di "riprodurre" la relazione "storica" media particellare trentina tra *G*/ha e *V*/ha, con errori molto contenuti (<8,26 m³ ha nel 95% dei casi, <2,46 m³ nel 50%) e con struttura dei residui regolare su tutto il campo di esplicazione.

Dalle prime sperimentazioni operative stanno emergendo indicazioni favorevoli nella traslazione applicativa del modello a medie di unità campionarie per una conferma dell'effettiva validità di tale ipotesi di approccio alla quantificazione delle provvigioni di strato.

Si delinea quindi uno scenario nel quale le nuove tariffe manterranno il loro ruolo primario essenzialmente nella quantificazione individuale delle masse all'atto delle martellate, mentre, sul piano inventariale, sarà il modello MPF quello delegato alla quantificazione delle provvigioni.

6. Conclusioni

Sembra di poter affermare che con questo studio si sono raggiunti risultati sia sul piano dell'adeguamento dei vecchi strumenti dendrometrici trentini alla realtà delle nuove metodologie assestamentali e informatiche, sia nei confronti della creazione di un contesto più vasto e completo d'approccio alla quantificazione delle masse assestamentali (in passato inesistente) nel quale le singole componenti estimative (tavole a doppia entrata, nuove tariffe, modelli collettivi per le fustaie) sono elementi coordinati e congruenti.

Tali risultati sono stati raggiunti salvaguardando la sostanziale continuità rispetto al passato dei riferimenti quantitativi nella trasformazione di dati inventariali nativi in masse e provvigioni legnose e soprattutto senza alcun costo di rilievi di campagna, valorizzando invece l'imponente mole di dati inventariali che la Provincia di Trento ha costruito in oltre mezzo secolo di attività di pianificazione forestale delle proprie risorse boschive.

Bibliografia

ASAEL F. et al., 1999 – *Peuplements forestiers du massif Vosgien. Typologie et sylvicoltures.* ONF, CRPF de Lorraine-Alsace.

Cristofolini F., 1956 - Istruzioni per l'uso delle tariffe regionali. Rapporto interno PAT.

CASTELLANI C., SCRINZI G., TABACCHI G., TOSI V., 1988 - *Inventario forestale nazionale Italiano Sintesi metodologica e risultati; rappresentazione cartografica*. Ministero dell'Agricoltura e delle Foreste, Istituto Sperimentale per l'Assestamento Forestale e per l'Alpicoltura, Trento.

Grundner-Schwappach, 1952 – *Massentafeln*, Verlag Paul Parey. Berlino.

Sottovia L., Tabacchi G., 1996 – *Tavole per la determinazione diretta della massa legnosa in piedi dei boschi cedui del Trentino.* ISAFA, Trento, Comunicazioni di ricerca 96/1.

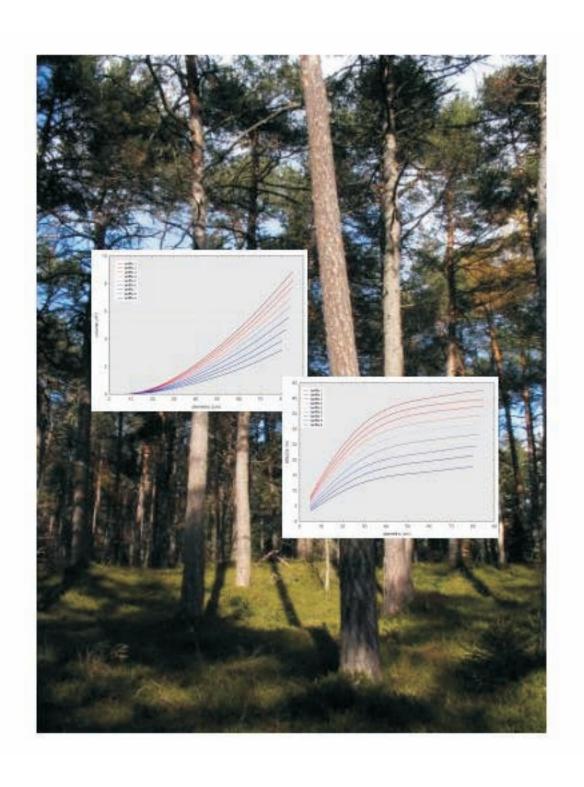
Scrinzi G., F. Clementel, G. Colle, A. Floris, D. Galvagni, L. Marzullo, 2009 - *Progetto RESIA1*. Studio, ideazione, sviluppo, implementazione e verifica operativa di criteri e metodi inventariali innovativi, sotto il punto di vista dell'efficienza informativa ed in relazione ai costi, per la realizzazione di piani di gestione forestale aziendale dei patrimoni agro-silvo-pastorali della Provincia autonoma di Trento. Trento, Cra.

SCRINZI G., F. CLEMENTEL, G. COLLE, A. FLORIS, D. GALVAGNI, S. GECELE, L. MARZULLO, 2008 - *Soluzioni statistico-matematiche, informatiche e tecnologie per la nuova pianificazione forestale aziendale trentina*. AISF, Atti III convegno nazionale di selvicoltura. Taormina 2008. p. 915-920.

Scrinzi G., 2007. Progetto Metafora. Ipotesi progettuale per la ridefinizione dei contenuti della pianificazione aziendale dei patrimoni forestali della Provincia di Trento, con specifico riguardo alla revisione delle metodologie inventariali. Trento, Cra.

Scrinzi G., 2007 - Progetto Metafora. Possibilità e modalità d'impiego dei dati dendroauxometrici presenti negli archivi assestamentali della Provincia Autonoma di Trento nell'ambito della revisione delle metodologie inventariali della pianificazione forestale aziendale. Trento, Cra.

Scrinzi G., 1989 - *Precisione degli inventari assestamentali per cavallettamento totale: un'analisi di trent'anni d'esperienza applicativa in Trentino*. Annali dell'Istituto Sper. per l'Assestamento For. e per l'Alpicoltura vol. XI, Trento - 1988. 143 - 186.


Wolynski A., M. Zanin, G. Scrinzi, 2008 – Revisione della pianificazione forestale in Trentino a cinquant'anni dall'adozione della selvicoltura naturalistica. AISF, Atti III convegno nazionale di selvicoltura. Taormina 2008. p. 928-932.

ZIANIS D., MUUKKONEN P., MÄKIPÄÄ R., MENCUCCINI M., 2005 - Biomass and stem volume equation for tree species in Europ. Silva Fennica – monographs 4, Appendix A.


Appendice

NUOVE TARIFFE DI CUBATURA PER LE PRINCIPALI SPECIE FORESTALI DELLA PROVINCIA AUTONOMA DI TRENTO

NUOVE TARIFFE DI CUBATURA DELL'ABETE ROSSO Picea abies L. Karsten

TAVOLA 1 – diametri da 5 a 45 cm

d	1		2		3		4		5		6		7		8		9
	h ₁ v ₁	h ₂	V ₂	h ₃	V ₃	h ₄	V ₄	h ₅	V 5	h ₆	V ₆	h ₇	V ₇	h ₈	V 8	h ₉	V 9
5	7.8 0.002	7.4	0.002	7.0	0.002	6.4	0.002	5.8	0.002	5.1	0.001	4.5	0.001	4.0	0.001	3.5	0.001
6	9.1 0.007	8.6	0.006			7.4	0.005	6.70		5.9	0.004	5.10		4.5	0.003	3.90	.003
7	10.4 D.013	9.8	0.013			8.4	0.011	7.60		6.6	0.008	5.80		5.1	0.006	4.4 0	
8	11.6 0.023	11.0	i	10.2	0.020	9.3	0.018	8.5 C		7.4	0.014	6.50		5.6	0.011	4.80	
9	12.9 0.035	12.1		11.3	0.031	10.3	0.028	9.3 0		8.2	0.022	7.10		6.2	0.016	5.3 0	
10	14.1 0.051	13.2	0.048	12.3	0.044	11.3	0.040	10.2	0.036	8.9	0.032	7.8	0.027	6.7	0.023	5.7	0.020
11	15.2 0.070	14.3	·····	13.3	0.061	12.2	0.055	11.0	0.050	9.6	0.043	8.4 0		7.3	0.032	6.2 0	
12	16.4 0.092	15.4		14.3	0.080	13.1	0.073	11.9	0.066	10.4	0.057	9.0 0		7.8	0.042	6.6 0	
13	17.5 D.118	16.4	·····	15.3	0.102	14.0	0.093	12.7	0.084	11.1	0.073	9.7 0		8.3	0.054	7.10	
14	18.6 D.148	17.4	ļ	16.2	0.128	14.9	0.117	13.5	0.105	11.8	0.091	10.3	0.079	8.8	0.067	7.5 0	
15	19.7 0.181	18.4	0.168	17.1	0.156	15.8			0.129	12.5	0.112	10.9	0.097	9.3	0.083	7.9	0.069
16	20.7 D.218	19.4	0.203	18.0	0.188	16.6	0.173	15.0	0.155	13.2	0.135	11.4	0.117	9.8	0.100	8.3 0	
17	21.7 0.259	20.3		18.9	0.224	17.4	0.206	15.7	0.184	13.8	0.161	12.0	0.139	10.3	0.118	8.7 0	
18	22.7 0.304	21.2		19.8	0.262	18.2	0.241	16.4	0.216	14.5	0.189	12.6	0.163	10.8	0.139	9.10	
19	23.6 0.352	22.1	0.327		0.304	19.0	0.280	17.1	0.251	15.1	0.220	13.1	0.189	11.2	0.161	9.5 0	
20	24.6 0.405	22.9	0.376	21.4	0.350	19.8	0.322	17.8	0.289	15.7	0.253	13.6	0.218	11.7	0.185	9.8	0.155
21	25.4 0.461	23.7	·····	22.1	0.398	20.5	0.367	18.5	0.329	16.3	0.288	14.1	0.248	12.1	0.211	10.2	0.176
22	26.3 0.521	24.5	0.484		0.450	21.2	0.415	19.1	0.372	16.8	0.326	14.6	0.281	12.5	0.239	10.5	0.199
23	27.1 0.585	25.3	0.543		0.505	21.8	0.466	19.7	0.418	17.4	0.367	15.1	0.315	12.9	0.268	10.9	0.224
24	27.9 0.652	26.0	0.606		0.563	22.5	0.520	20.3	0.466	17.9	0.409	15.5	0.352	13.3	0.299	11.2	0.249
25 26	28.6 0.723 29.4 0.797	26.7 27.4	0.672 0.741	24.9 25.6	0.625 0.689	23.1 23.7	0.576 0.636	20.8 21.4	0.517 0.571	18.4 18.9	0.455 0.502	15.9 16.3	0.390 0.431	13.7 14.0	0.332 0.367	11.5 11.8	0.276 0.305
27	30.0 D.875	28.0		25.0 26.2	0.757	24.2	0.698	21.4	0.627	19.4	0.552	16.7	0.431	14.0	0.402	12.0	0.335
28	30.7 0.956	28.7	ļ	26.8	0.737	24.8	0.763	22.4	0.685	19.8	0.603	17.1	0.473	14.7	0.440	12.3	0.365
29	31.3 1.040	29.2	0.967		0.900	25.3	0.830	22.8	0.746	20.2	0.657	17.5	0.562	15.0	0.479	12.6	0.398
30	31.9 1.127	29.8	1.048	27.8	0.900	25.8	0.000	23.3	0.809	20.2	0.713	17.8	0.609	15. 3	0.519	12.8	0.431
31	32.5 1.216	30.3	1.133		1.054	26.2	0.972	23.7	0.874	21.0	0.770	18.1	0.658	15.6	0.561	13.0	0.465
32	33.0 1.309	30.9	1.219		1.136	26.7	1.047	24.1	0.941	21.4	0.830	18.4	0.708	15.8	0.604	13.2	0.500
33	33.5 1.404	31.3	ţ	29.3	1.219	27.1	1.123	24.5	1.010	21.8	0.891	18.7	0.759	16.1	0.649	13.4	0.537
34	34.0 1.502	31.8	·····	29.7	1.305	27.5	1.202	24.9	1.081	22.1	0.954	18.9	0.812	16.3	0.694	13.6	0.574
35	34.5 1.603	32.2	1.495	30.2	1.393	27.9		25.2	1.154	22.4	1.019	19.2	0.866	16.5	0.741	13.8	0.612
36	34.9 1.705	32.7		30.5	1.484	28.2	1.365	25.5	1.228	22.7	1.085	19.4	0.922	16.7	0.789	14.0	0.651
37	35.3 1.810	33.0	1.690		1.576	28.5	1.449	25.8	1.305	23.0	1.153	19.6	0.978	16.9	0.838	14.1	0.691
38	35.7 1.917	33.4		31.3	1.671	28.9	1.535	26.1	1.383	23.2	1.222	19.8	1.036	17.1	0.887	14.3	0.732
39	36.0 2.027	33.8	1.894	31.6	1.767	29.1	1.623	26.4	1.462	23.5	1.292	20.0	1.094	17.3	0.938	14.4	0.773
40	36.3 2.138	34.1	1.999	31.9	1.865	29.4		26.7	1.543	23.7	1.364	20.2	1.154	17.5	0.990	14.5	0.816
41	36.7 2.251	34.4	2.105		1.965	29.7	1.802	26.9	1.625	23.9	1.437	20.4	1.215	17.6	1.043	14.7	0.859
42	36.9 2.365	34.7		32.5	2.067	29.9	1.894	27.1	1.709	24.1	1.511	20.5	1.276	17.8	1.097	14.8	0.902
43	37.2 2.482	35.0		32.8	2.170	30.1	1.988	27.3	1.794	24.3	1.587	20.7	1.339	17.9	1.151	14.9	0.947
44	37.5 2.600	35.2	2.435	33.0	2.275	30.3	2.083	27.5	1.880	24.5	1.663	20.8	1.402	18.1	1.207	15.0	0.992
45	37.7 2.720	35.5	2.549	33.2	2.382	30.5	2.179	27.7	1.967	24.7	1.741	21.0	1.467	18.2	1.263	15.1	1.037

TAVOLA 2 – diametri da 46 a 85 cm

	1	1 <u> </u> 2		3		4		5		6		7		8		9
d	h ₁ v ₁	h ₂ v ₂	h ₃	V ₃	h ₄	V 4	h ₅	V ₅	h ₆	V ₆	h ₇	V ₇	h ₈	V ₈	h ₉	V ₉
46	37.9 2.841	35.7 2.66	3 33.5	2.489	30.7	2.276	27.9	2.056	24.8	1.820	21.1	1.532	18.3	1.320	15.2	1.084
47	38.2 2.964	35.9 2.78	0 33.7	2.599	30.9	2.375	28.1	2.146	25.0	1.899	21.2	1.599	18.4	1.378	15.3	1.131
48	38.4 3.089	36.1 2.89	7 33.9	2.709	31.1	2.474	28.2	2.237	25.1	1.980	21.3	1.666	18.5	1.437	15.3	1.178
49	38.5 3.215	36.3 3.01	6 34.0	2.821	31.2	2.575	28.4	2.329	25.3	2.062	21.4	1.734	18.6	1.497	15.4	1.227
50	38.7 3.342	36.4 3.13	7 34.2	2.935	31.3	2.677	28.5	2.423	25.4	2.145	21.5	1.803	18.7	1.557	15.5	1.276
51	38.9 3.472	36.6 3.25	8 34.4	3.049	31.5	2.781	28.6	2.517	25.5	2.228	21.6	1.874	18.8	1.619	15.6	1.326
52	39.0 3.602		2 34.5	3.165	31.6	2.885	28.8	2.613	25.6	2.313	21.7	1.945	18.9	1.681	15.6	1.377
53	39.2 3.734		6 34.7	3.282	31.7	2.991	28.9	2.710	25.7	2.399	21.8	2.017	19.0	1.745	15.7	1.429
54	39.3 3.868		2 34.8	3.401	31.8	3.098	29.0	2.808	25.8	2.487	21.9	2.091	19.1	1.809	15.8	1.481
55	39.5 4.004	37.2 3.75		3.520	31.9	3.207	29.1	2.908	25.9	2.575	22.0	2.166	19.2	1.874	15.9	1.535
56	39.6 4.141	·	7 35.0	3.641	32.1		29.2	3.008	26.0	2.664	22.1	2.242	19.3	1.941	15.9	1.589
57	39.7 4.280		7 35.1	3.764	32.2	3.427	29.3	3.111	26.1	2.755	22.2	2.320	19.3	2.008	16.0	1.644
58	39.8 4.420	37.5 4.14		3.887	32.3	3.540	29.4	3.214	26.2	2.847	22.3	2.398	19.4	2.077	16.1	1.701
59	40.0 4.563	37.6 4.28		4.012	32.3	3.654	29.5	3.319	26.3	2.940	22.4	2.479	19.5	2.147	16.1	1.758
60	40.1 4.707	37.7 4.41		4.139	32.4	3.769	29.6	3.425	26.4	3.034	22.5	2.561	19.6	2.218	16.2	1.817
61	40.2 4.853	37.8 4.55		4.267	32.5	3.886	29.7	3.533	26.5	3.130	22.6	2.644	19.7	2.290	16.3	1.876
62	40.3 5.002		8 35.7	4.396	32.6	4.005	29.8	3.642	26.6	3.227	22.7	2.729	19.8	2.364	16.4	1.937
63	40.4 5.152	38.0 4.82		4.527	32.7	4.125	29.9	3.753	26.7	3.326	22.8	2.816	19.9	2.439	16.4	1.999
64	40.5 5.304		7 35.8	4.659	32.8	4.247	30.0	3.865	26.8	3.426	22.9	2.904	19.9	2.515	16.5	2.062
65	40.7 5.459	38.2 5.10	_	4.793	32.9	4.370	30.1	3.979	26.8	3.528	23.0	2.994	20.0	2.593	16.6	2.127
66	40.8 5.615	38.3 5.25		4.928	33.0	4.496	30.2	4.095	26.9	3.631	23.1	3.086	20.1	2.672	16.7	2.193
67	40.9 5.774	38.4 5.39		5.065	33.1	4.623	30.3	4.212	27.0	3.735	23.2	3.179	20.2	2.752	16.8	2.260
68	41.0 5.934	·	6 36.2	5.204	33.2	4.752	30.4	4.331	27.1	3.841	23.3	3.274	20.3	2.834	16.8	2.328
69 70	41.1 6.097	38.5 5.69		5.344	33.3 33.4	4.882	30.5	4.452	27.2 27.3	3.949	23.4	3.371 3.469	20.4	2.917	16.9	2.397
71	41.2 6.262 41.3 5.429	38.6 5.84 38.7 5.99		5.486 5.630	33.5		30.6 30.7	4.574 4.697	27.4	4.058 4.168	23.5 23.6	3.568	20.5 20.6	3.001 3.087	17.0 17.1	2.468 2.539
72	41.5 6.598		2 36.5	5.775	33.6	5.284	30.8	4.822	27.5	4.100	23.7	3.669	20.7	3.173	17.1	2.612
73	41.6 6.768	·	7 36.6	5.922	33.7	5.422	30.9	4.949	27.6	4.393	23.8	3.771	20.7	3.260	17.3	2.685
74	41.7 5.941		5 36.7	6.071	33.7	5.560	30.9	5.076	27.6	4.507	23.9	3.874	20.8	3.349	17.3	2.759
75	41.8 7.114	39.0 6.62		6.221	33.8	5.700	31.0	5.205	27.7	4.623	24.0	3.977	20.9	3.437	17.4	2.834
76	41.9 7.289	39.1 6.78		6.372	33.9	5.841	31.1	5.334	27.8	4.738	24.1	4.081	21.0	3.527	17.5	2.909
77	42.0 7.465	39.2 6.94		6.525		5.983	31.2	5.464	27.9	4.855	24.2	4.185	21.1	3.616	17.5	2.984
78	42.1 7.641	39.3 7.10		6.680	34.1	6.125	31.3	5.595	27.9	4.972	24.3	4.289	21.1	3.705	17.6	3.059
79	42.1 7.818	39.3 7.27		6.835	34.1	6.268	31.3	5.725	28.0	5.088	24.3	4.391	21.2	3.794	17.7	3.133
80	42.2 7.994	39.4 7.43		6.991	34.2	6.410	31.4	5.856	28.1	5.205	24.4	4.493	21.2	3.882	17.7	3.207
81	42.3 3.170	39.5 7.60		7.148	34.3	6.552	31.4	5.986	28.1	5.321	24.4	4.593				
82	42.3 3.345	39.5 7.76		7.306	34.3		31.5	6.114	28.1	5.435	24.5	4.690				
83	42.3 3.518	39.6 7.93		7.464	34.3	6.833	31.5	6.241	28.2	5.548					Ì	
84	42.3 3.688	39.6 8.09	9 37.4	7.621	34.3	6.971	31.5	6.366					7		Ì	
85	42.3 8.855	39.6 8.26		7.779											Ì	
	; 0.000	30.0 0.20		.												

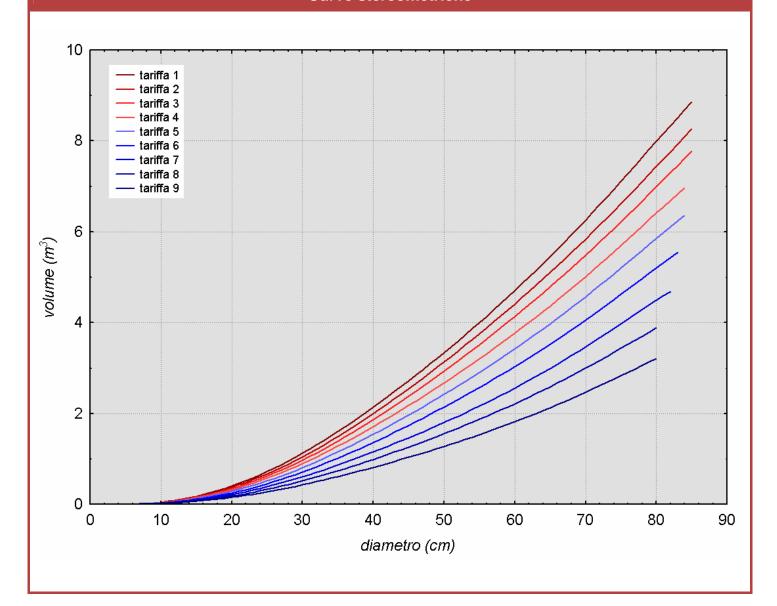
TAVOLA 3 - classi diametriche 5 cm

	d		1		2		3		4		5		6		7		8		9
	u	h ₁	V ₁	h ₂	V ₂	h ₃	V ₃	h ₄	V ₄	h ₅	V 5	h ₆	V ₆	h ₇	V ₇	h ₈	V ₈	h ₉	V 9
5	02	7.8	0.002	7.4	0.002	7.0	0.002	6.4	0.002	5.8	0.002	5.1	0.001	4.5	0.001	4.0	0.001	3.5	0.001
10	01	14.1	0.051	13.2	0.048	12.3	0.044	11.3	0.040	10.2	0.036	8.9	0.032	7.8	0.027	6.7	0.023	5.7	0.020
15	0	19.7	0.181	18.4	0.168	17.1	0.156	15.8	0.143	14.2	0.129	12.5	0.112	10.9	0.097	9.3	0.083	7.9	0.069
20	1	24.6	0.405	22.9	0.376	21.4	0.350	19.8	0.322	17.8	0.289	15.7	0.253	13.6	0.218	11.7	0.185	9.8	0.155
25	2	28.6	0.723	26.7	0.672	24.9	0.625	23.1	0.576	20.8	0.517	18.4	0.455	15.9	0.390	13.7	0.332	11.5	0.276
30	3	31.9	1.127	29.8	1.048	27.8	0.976	25.8	0.900	23.3	0.809	20.7	0.713	17.8	0.609	15.3	0.519	12.8	0.431
35	4	34.5	1.603	32.2	1.495	30.2	1.393	27.9	1.282	25.2	1.154	22.4	1.019	19.2	0.866	16.5	0.741	13.8	0.612
40	5	36.3	2.138	34.1	1.999	31.9	1.865	29.4	1.712	26.7	1.543	23.7	1.364	20.2	1.154	17.5	0.990	14.5	0.816
45	6	37.7	2.720	35.5	2.549	33.2	2.382	30.5	2.179	27.7	1.967	24.7	1.741	21.0	1.467	18.2	1.263	15.1	1.037
50	7	38.7	3.342	36.4	3.137	34.2	2.935	31.3	2.677	28.5	2.423	25.4	2.145	21.5	1.803	18.7	1.557	15.5	1.276
55	8	39.5	4.004	37.2	3.759	34.9	3.520	31.9	3.207	29.1	2.908	25.9	2.575	22.0	2.166	19.2	1.874	15.9	1.535
60	9	40.1	4.707	37.7	4.415	35.5	4.139	32.4	3.769	29.6	3.425	26.4	3.034	22.5	2.561	19.6	2.218	16.2	1.817
65	10	40.7	5.459	38.2	5.109	35.9	4.793	32.9	4.370	30.1	3.979	26.8	3.528	23.0	2.994	20.0	2.593	16.6	2.127
70	11	41.2	6.262	38.6	5.845	36.4	5.486	33.4	5.015	30.6	4.574	27.3	4.058	23.5	3.469	20.5	3.001	17.0	2.468
75	12	41.8	7.114	39.0	6.624	36.8	6.221	33.8	5.700	31.0	5.205	27.7	4.623	24.0	3.977	20.9	3.437	17.4	2.834
80	13	42.2	7.994	39.4	7.437	37.1	6.991	34.2	6.410	31.4	5.856	28.1	5.205	24.4	4.493	21.2	3.882	17.7	3.207
85	14	42.3	8.855	39.6	8.263	37.4	7.779												

MODELLO A DOPPIA ENTRATA **MV2**

Struttura funzionale

$$V = a \times (d - d_0)^b \times h^c$$

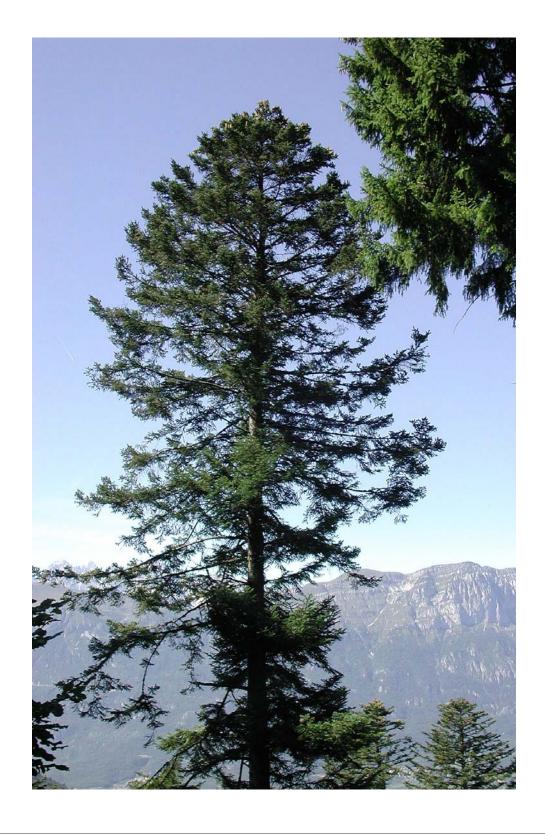

Unità di misura

V	d	h								
m³ cm		m								

Parametri della funzione

_ a _	b	C	d_0
0.000177367991170896	1.56425370572013	1.05156473615877	3.69465

Curve stereometriche



NUOVE TARIFFE DI CUBATURA DELL'ABETE ROSSO - Picea abies (L.) Karsten **M**ODELLI IPSOMETRICI Struttura funzionale $h = 1.30 + b_1 d + b_2 d^2 + b_3 d^3 + b_4 d^4 + b_5 d^5$ Unità di misura h d m c m Parametri delle funzioni Tariffa 1 Tariffa 2 Tariffa 3 Tariffa 4 Tariffa 5 1.322019115354600 1.253310110922040 1.158747653357300 1.006250931121290 891588780473929 b_1 0.000193168589137997 -0.00292803946147456 -0.00254770232488503 0.00371564927208322 00395174405336071 bo bз -0.000561338718330220 -0.000394818245994073 -0.000359810517955313 -0.000534673717423504 -0. 000490030434657358 b₄ 0.00000848633014924548 0.00000597851328281470 0.00000538069375586631 0.00000767184701944932 00000700514808560604 b_5 -0.000000385414285314989 -0.0000000262939152563139 -0.0000000234121022021542 -0.0000000341372675023622 0000000313010125027530 Tariffa 6 Tariffa 7 Tariffa 8 Tariffa 9 b_1 0.735212679007051 0.602485636412812 0.508762602308169 0.408553854843333 b_2 0.00703101464440913 0.00938982360030814 0.00735072463485610 0.00729926112445350 b₃ -0.000520550769841175 -0.000586119461476346 -0.000457659356475586 -0.000426086684775741 b_4 0.00000714533676766523 0.00000827700782041379 0.00000637306880966114 0.00000596624159181636 -0.0000000314963735713988-0.0000000378814404686078 -0.0000000288493693629086 -0.0000000272269588507870Curve ipsometriche 45 tariffa 1 tariffa 2 40 tariffa 3 tariffa 4 tariffa 5 tariffa 6 35 tariffa 7 tariffa 8 tariffa 9 30 altezza (m) 25 20 15 10 5 0 0 10 20 30 40 50 60 70 80 90 diametro (cm)

TAVOLA 1 - diametri da 5 a 45 cm

d		1		2		3		4		5		6		7		8		9
a	h ₁	V ₁	h ₂	V ₂	h ₃	V ₃	h ₄	V ₄	h ₅	V ₅	h ₆	V ₆	h ₇	V ₇	h ₈	V 8	h ₉	V 9
5	6.8	0.002	6.3	0.001	5.8	0.001	5.3	0.001	4.9	0.001	4.4	0.001	3.7	0.001	3.2	0.001	3.0	0.001
6	7.9 0	.005	7.3	0.004	6.7 0.0	04	6.1	0.004	5.70	.003	5.0	0.003	4.20	.003	3.7	0.002	3.40	.002
7	9.0 0	.010	8.2	0.009	7.6 0.0	09	7.0	0.008	6.40	.007	5.7	0.006	4.80	.005	4.1	0.005	3.8 0	.004
8	10.0	0.017	9.2	0.016	3.6 0.0	15	7.8	0.014	7.20	.013	6.3	0.011	5.40	.010	4.6	0.008	4.1 C	.007
9	11.1	0.027	10.2	0.025	9.5 0.0	23	8.6	0.021	8.00	.020	7.0	0.018	6.00	.015	5.1	0.013	4.5 0	.012
10	12.1	0.040	11.2	0.037	10.4	0.034	9.5	0.031	8.7	0.029	7.7	0.026	6.5	0.022	5.6	0.019	4.9	0.017
11	13.1	0.055	12.1	0.051	11.3	0.047	10.3	0.044	9.50	.040	8.3	0.036	7.10	.031	6.1	0.027	5.30	.023
12	14.1	0.073	13.1	0.068	12.1	0.063	11.1	0.058	10.2	0.054	9.0	0.048	7.70	.041	6.6	0.036	5.7 0	.031
13	15.1	0.094	14.0	0.088	13.0	0.082	12.0	0.076	10.9	0.070	9.7	0.062	8.3 0	.054	7.1	0.046	6.00	.040
14	16.0	0.119	14.9	0.111	13.9	0.104		0.096	11.7	0.088	10.3	0.079	8.9 0	.069	7.6	0.059	6.4 C	.050
15	16.9	0.147	15.8	0.137	14.7	0.129	13.6	0.119	12.4	0.109	11.0	0.098	9.5	0.085	8.1	0.073	6.8	0.062
16	17.8	0.178	16.6	0.167	15.6	0.157	14.3	0.145	13.1	0.133	11.6	0.119	10.1	0.104	8.5	0.089	7.20	.075
17	18.7	0.213	17.5	0.200	16.4	0.188	15.1	0.174	13.8	0.160	12.2	0.143	10.7	0.126	9.0	0.107	7.5 0	.090
18		0.252	18.3	0.236	17.2	0.222	15.9	0.206	14.5	0.189	12.9	0.169	11.3	0.149	9.5	0.127	7.90	
19	20.4	·	19.1	0.276	17.9	0.260	16.6	0.242	15.1	0.221	13.5	0.199	11.8	0.175	10.0	0.149	8.20	
20	1	0.339	19.9	0.320	18.7	0.301	17.3	0.280	15.8	0.256	14.1	0.230	12.4	0.204	10.4	0.174	8.5	0.144
21		0.389	20.7	ļ	19.4	0.345	18.0	0.322	16.4	0.294	14.7	0.265	12.9	0.235	10.9	0.200	8.9 0	
22		0.442	21.5	0.418		0.393	18.7	0.367	17.0	0.336	15.2	0.302	13.4	0.269	11.3	0.228	9.20	
23		D.499	22.2	0.472		0.444	19.3	0.415	17.6	0.379	15.8	0.342	13.9	0.305	11.7	0.259	9.50	
24		0.559	22.9	0.530		0.499	20.0	0.466	18.2	0.426	16.3	0.385	14.4	0.343	12.1	0.291	9.80	
25		0.623	23.6	0.591	22.1	0.557	20.6	0.521	18.7	0.476	16.8	0.430	14.9	0.384	12.5	0.326	10.1	0.266
26		0.691	24.2	0.656		0.618	21.2	0.578	19.3	0.529	17.3	0.478	15.4	0.427	12.9	0.363	10.4	0.295
27		0.762	24.8	0.724		0.683	21.8	0.639	19.8	0.585	17.8	0.529	15.8	0.473	13.3	0.402	10.6	0.325
28		0.837	25.5	0.796	•	0.750	22.3	0.703	20.3	0.643	18.3	0.582	16.2	0.521	13.6	0.442	10.9	0.357
29		0.915	26.0	0.871	• • • • • • • • • • • • • • • • • • • •	0.821	22.8	0.769	20.8	0.704	18.7	0.638	16.7	0.572	14.0	0.485	11.1	0.391
30	28.0	0.997	26.6	0.949	25.0	0.895	23.3	0.839	21.2	0.768	19.2	0.697	17.1	0.624	14.3	0.530	11.4	0.426
31		1.082	27.1	1.031		0.972	23.8	0.911	21.7	0.835	19.6	0.758	17.4	0.679	14.6	0.576	11.6	0.463
32 33		1.170 1.262	27.7 28.1	1.116 1.204		1.052 1.135	24.3 24.7	0.987 1.065	22.1 22.5	0.904 0.975	20.0	0.821 0.887	17.8 18.1	0.736 0.795	14.9 15.2	0.624 0.674	11.8 12.0	0.500 0.540
34		1.357	28.6	1.204		1.133	25.1	1.145	22.9	1.049	20.7	0.007	18.5	0.795	15.2	0.074	12.0	0.580
35	30.5	1.455	29.1	1.388	27.3	1.308	25.5	1.228	23.3	1.126	21.1	1.025	18.8	0.000	15.7	0.779	12.4	0.622
36		1.555	29.5	1.485		1.399	25.9	1.314	23.6	1.205	21.4	1.023	19.0	0.919	16.0	0.834	12.4	0.665
37		1.659	29.9	1.585		1.493	26.2	1.401	23.9	1.286	21.7	1.172	19.3	1.051	16.2	0.890	12.7	0.709
38		1.766	30.3	1.687	•	1.589	26.6	1.492	24.3	1.369	22.0	1.248	19.6	1.119	16.4	0.948	12.9	0.754
39		1.875	30.6	1.791		1.687	26.9	1.584	24.6	1.455	22.3	1.326	19.8	1.189	16.6	1.007	13.0	0.801
40	32.5	1.987	31.0	1.899	29.0	1.787	27.2	1.678	24.8	1.542	22.5	1.406	20.0	1.260	16.8	1.068	13.2	0.848
41		2.101	31.3	2.008		1.890	27.4	1.775	25.1	1.631	22.8	1.488	20.3	1.333	17.0	1.130	13.3	0.897
42		2.219	31.6	2.120		1.994	27.7	1.873	25.3	1.723	23.0	1.572	20.5	1.408	17.2	1.193	13.4	0.946
43		2.338	31.9	2.234	•	2.101	27.9	1.973	25.6	1.816	23.2	1.657	20.6	1.483	17.3	1.257	13.5	0.997
44		2.460	32.1	2.350	•	2.210	28.2	2.075	25.8	1.910	23.4	1.744	20.8	1.560	17.5	1.323	13.6	1.049
45	34.0	2.584	32.4	2.469	30.3	2.321	28.4	2.179	26.0	2.007	23.6	1.833	21.0	1.638	17.6	1.389	13.8	1.102

TAVOLA 2 – diametri da 46 a 85 cm

d	1	2	3	4	5	6	7	8	9
u	h ₁ v ₁	h ₂ v ₂	h ₃ v ₃	h ₄ v ₄	h ₅ v ₅	h ₆ v ₆	h ₇ v ₇	h ₈ v ₈	h ₉ v ₉
46	34.3 2.710	32.6 2.589	30.5 2.433	28.6 2.285	26.2 2.105	23.8 1.922	21.1 1.718	17.7 1.457	13.9 1.155
47	34.5 2.839	32.9 2.712	30.7 2.547	28.8 2.392	26.4 2.205	24.0 2.014	21.2 1.798	17.8 1.526	13.9 1.210
48	34.7 2.970	33.1 2.836		28.9 2.500	26.5 2.307	24.1 2.106	21.4 1.880	18.0 1.596	14.0 1.266
49	34.9 3.103	33.2 2.962	31.1 2.781	29.1 2.611	26.7 2.410	24.2 2.200	21.5 1.963	18.1 1.666	14.1 1.322
50	35.1 3.23	33.4 3.090	31.2 2.900	29.2 2.722	26.9 2.514	24.4 2.296	21.6 2.047	18.2 1.738	14.2 1.380
51	35.3 3.374	33.6 3.219	31.4 3.021	29.4 2.836	27.0 2.620	24.5 2.392	21.7 2.132	18.2 1.811	14.3 1.438
52	35.5 3.513	33.7 3.350	31.5 3.143		27.1 2.728	24.6 2.490	21.8 2.218	18.3 1.885	14.4 1.498
53	35.6 3.654	33.9 3.483	31.7 3.268	29.6 3.067	27.2 2.837	24.7 2.589	21.9 2.305	18.4 1.961	14.4 1.558
54	35.8 3.796	34.0 3.618	31.8 3.393	···	27.4 2.947	24.8 2.689	21.9 2.393	18.5 2.037	14.5 1.620
55	35.9 3.94°		31.9 3.520			24.9 2.790	22.0 2.482	18.6 2.114	14.6 1.682
56	36.1 4.087	34.2 3.891		···		25.0 2.893	22.1 2.572	18.6 2.192	14.6 1.746
57	36.2 4.235	34.3 4.031	32.1 3.779	· ,	27.7 3.287	25.1 2.996	22.1 2.663	18.7 2.272	14.7 1.811
58	36.3 4.385	34.4 4.172	32.2 3.911	30.1 3.670	27.7 3.403	25.1 3.101	22.2 2.756	18.7 2.353	14.7 1.877
59	36.4 4.537	34.5 4.314	32.2 4.045	···	27.8 3.520	25.2 3.208	22.2 2.850	18.8 2.435	14.8 1.944
60	36.5 4.690	34.6 4.458	32.3 4.180	30.2 3.922	27.9 3.639	25.3 3.315	22.3 2.944	18.9 2.518	14.9 2.012
61	36.6 4.846		32.4 4.317		28.0 3.760	25.3 3.423	22.3 3.040	18.9 2.602	14.9 2.081
62	36.7 5.003	34.8 4.751			28.1 3.882	25.4 3.533	22.4 3.138	19.0 2.688	15.0 2.152
63	36.8 5.163	34.8 4.900		- 1	28.1 4.006	25.4 3.644	22.4 3.236	19.0 2.775	15.1 2.223
64	36.9 5.324	34.9 5.050	32.6 4.737		28.2 4.131	25.5 3.757	22.5 3.336	19.1 2.863	15.1 2.296
65	37.0 5.487		32.7 4.881	30.5 4.581	28.3 4.258	25.5 3.870	22.5 3.438	19.2 2.953	15.2 2.370
66	37.1 5.652	35.0 5.357	32.7 5.026	30.6 4.718	28.3 4.387	25.6 3.985	22.6 3.540	19.2 3.044	15.2 2.446
67	37.1 5.819	35.1 5.512			28.4 4.517	25.6 4.102	22.6 3.644	19.3 3.137	15.3 2.522
68	37.2 5.989	35.1 5.670	32.8 5.323	30.7 4.998	28.4 4.648	25.7 4.220	22.6 3.750	19.3 3.231	15.3 2.600
69	37.3 5.160	35.2 5.829			28.5 4.782	25.7 4.339	22.7 3.857	19.4 3.326	15.4 2.679
70	37.4 6.33				28.6 4.917	25.7 4.460	22.7 3.966	19.4 3.423	15.5 2.759
71	37.4 5.508	35.3 6.154		- 1	28.6 5.053	25.8 4.582	22.8 4.075	19.5 3.521	15.5 2.840
72	37.5 5.685	35.3 6.319		•	28.7 5.192	25.8 4.705	22.8 4.187	19.6 3.621	15.6 2.922
73	37.6 6.865	35.4 6.486	•••		28.7 5.332	25.9 4.830	22.9 4.300	19.6 3.721	15.6 3.005
74	37.6 7.046	···	33.2 6.258		28.8 5.473	25.9 4.956	22.9 4.414	19.7 3.823	15.7 3.088
75	37.7 7.230		33.2 6.421			25.9 5.084	22.9 4.529	19.7 3.925	15.7 3.172
76	37.8 7.415	35.5 6.998	•••		28.9 5.760	26.0 5.213	23.0 4.645	19.8 4.028	15.8 3.256
77	37.8 7.603	35.6 7.173		31.2 6.347	28.9 5.905	26.0 5.343	23.0 4.762	19.8 4.132	15.8 3.341
78	37.9 7.792	35.6 7.349			29.0 6.052	26.0 5.474	23.0 4.880	19.8 4.236	15.8 3.425
79	37.9 7.983	35.6 7.527	•••	31.3 6.664	29.0 6.199	26.1 5.607	23.1 4.999	19.9 4.340	15.9 3.509
80	38.0 8.170				29.0 6.347	26.1 5.740	23.1 5.117	19.9 4.444	15.9 3.593
81	38.0 3.371	···	33.5 7.428		29.1 6.495	26.1 5.874	23.1 5.236	19.9 4.547	15.9 3.675
82	38.1 3.567	35.8 8.072	•••	·	29.1 6.644	26.1 6.008	23.1 5.354	19.9 4.649	
83	38.1 3.765	35.8 8.256	33.6 7.772	31.4 7.307	29.1 6.793	26.2 6.143	23.1 5.472		
84	38.2 3.964	35.8 8.441	33.6 7.944		29.1 6.941	26.2 6.277			
85	38.2 9.163	35.9 8.628	33.6 8.116	31.5 7.627	29.1 7.088	26.2 6.412			

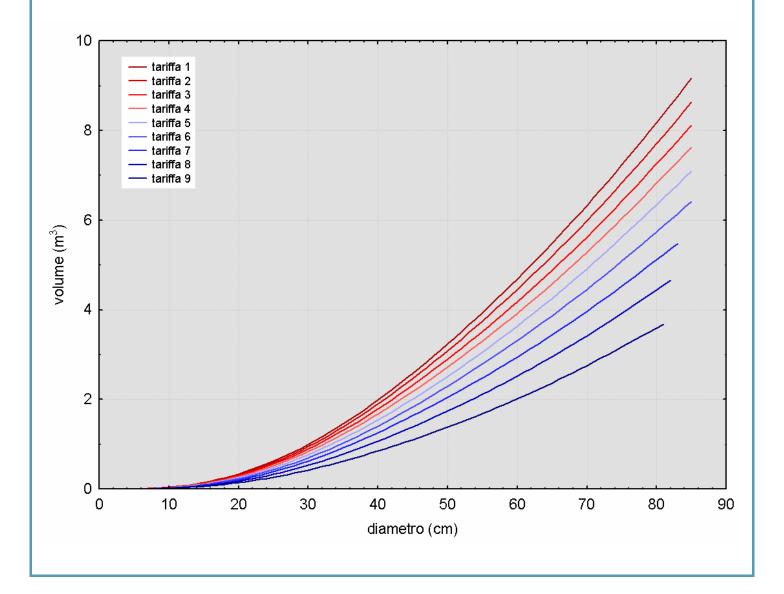
TAVOLA 3 - classi diametriche 5 cm

	d		1		2		3		4		5		6		7		8		9
	u	h ₁	V ₁	h ₂	V ₂	h ₃	V 3	h ₄	V 4	h ₅	V 5	h ₆	V 6	h ₇	V 7	h ₈	V 8	h ₉	V 9
5	02	6.8	0.002	6.3	0.001	5.8	0.001	5.3	0.001	4.9	0.001	4.4	0.001	3.7	0.001	3.2	0.001	3.0	0.001
10	01	12.1	0.040	11.2	0.037	10.4	0.034	9.5	0.031	8.7	0.029	7.7	0.026	6.5	0.022	5.6	0.019	4.9	0.017
15	0	16.9	0.147	15.8	0.137	14.7	0.129	13.6	0.119	12.4	0.109	11.0	0.098	9.5	0.085	8.1	0.073	6.8	0.062
20	1	21.2	0.339	19.9	0.320	18.7	0.301	17.3	0.280	15.8	0.256	14.1	0.230	12.4	0.204	10.4	0.174	8.5	0.144
25	2	24.9	0.623	23.6	0.591	22.1	0.557	20.6	0.521	18.7	0.476	16.8	0.430	14.9	0.384	12.5	0.326	10.1	0.266
30	3	28.0	0.997	26.6	0.949	25.0	0.895	23.3	0.839	21.2	0.768	19.2	0.697	17.1	0.624	14.3	0.530	11.4	0.426
35	4	30.5	1.455	29.1	1.388	27.3	1.308	25.5	1.228	23.3	1.126	21.1	1.025	18.8	0.919	15.7	0.779	12.4	0.622
40	5	32.5	1.987	31.0	1.899	29.0	1.787	27.2	1.678	24.8	1.542	22.5	1.406	20.0	1.260	16.8	1.068	13.2	0.848
45	6	34.0	2.584	32.4	2.469	30.3	2.321	28.4	2.179	26.0	2.007	23.6	1.833	21.0	1.638	17.6	1.389	13.8	1.102
50	7	35.1	3.237	33.4	3.090	31.2	2.900	29.2	2.722	26.9	2.514	24.4	2.296	21.6	2.047	18.2	1.738	14.2	1.380
55	8	35.9	3.941	34.1	3.754	31.9	3.520	29.8	3.303	27.5	3.059	24.9	2.790	22.0	2.482	18.6	2.114	14.6	1.682
60	9	36.5	4.690	34.6	4.458	32.3	4.180	30.2	3.922	27.9	3.639	25.3	3.315	22.3	2.944	18.9	2.518	14.9	2.012
65	10	37.0	5.487	35.0	5.203	32.7	4.881	30.5	4.581	28.3	4.258	25.5	3.870	22.5	3.438	19.2	2.953	15.2	2.370
70	11	37.4	6.333	35.2	5.991	33.0	5.627	30.8	5.285	28.6	4.917	25.7	4.460	22.7	3.966	19.4	3.423	15.5	2.759
75	12	37.7	7.230	35.5	6.825	33.2	6.421	31.1	6.035	28.8	5.616	25.9	5.084	22.9	4.529	19.7	3.925	15.7	3.172
80	13	38.0	8.176	35.7	7.707	33.5	7.257	31.4	6.824	29.0	6.347	26.1	5.740	23.1	5.117	19.9	4.444	15.9	3.593
85	14	38.2	9.163	35.9	8.628	33.6	8.116	31.5	7.627	29.1	7.088	26.2	6.412						

MODELLO A DOPPIA ENTRATA MV2

Struttura funzionale

$$v = a \times (d - d_0)^b \times h^c$$

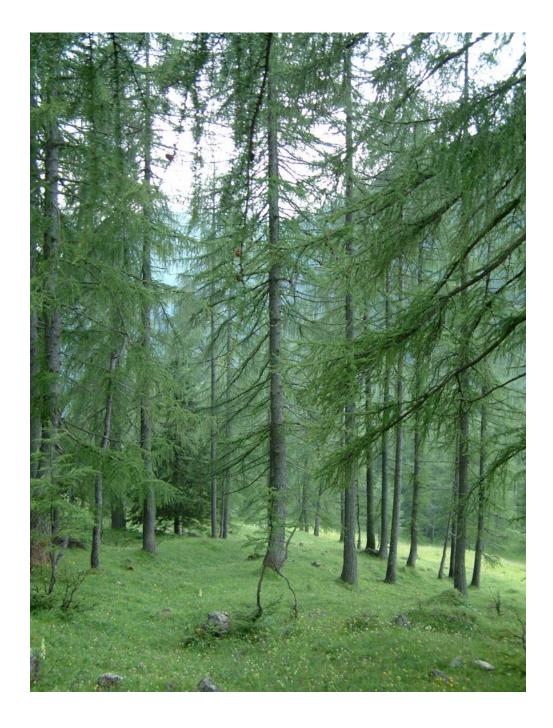

Unità di misura

V	d	h
m³ cm		m

Parametri della funzione

_ a	b	C	d_0
0.000162898357199892 1.7	0656012564636	0.94190457472194	3.69465

Curve stereometriche


NUOVE TARIFFE DI CUBATURA DELL'ABETE BIANCO - Abies alba Mill **M**ODELLI IPSOMETRICI Struttura funzionale $h = 1.30 + b_1 d + b_2 d^2 + b_3 d^3 + b_4 d^4 + b_5 d^5$ Unità di misura h d m c m Parametri delle funzioni Tariffa 1 Tariffa 2 Tariffa 3 Tariffa 4 Tariffa 5 1.121204292323840 0.981300021165136 0.871061791722291 0.751423757251665 () 687308000626729 b_1 -0.00112812463013990 0.00451935738618873 0.00846118590064735 0.01230282841864070 01002934062259540 bo b₃ 000532271098658902 -0.000342004845011366 -0.000636114695962130 -0. -0.000454727406669216 -0.000556964293515881 b₄ 0.00000469260927226540 0.00000570049980076179 0.00000785967171329327 0.00000700141469256472 00000656147315201537 b_5 -0.0000000191908708200858 -0.000000022496327495929 -0.0000000284650571734363 -0.0000000320543199266247 -0. 0000000267551320004059 Tariffa 6 Tariffa 7 Tariffa 8 Tariffa 9 b_1 0.563146653905253 0.400188244562452 0.315400408932237 0.305075495263081 b_2 0.01221909813940410 0.01860265734781900 0.01681503115693590 0.00901549463481577 b₃ -0.000698650705387670 -0.000628079946390089 -0.000402391633797053 -0.000539260760864182 b₄ 0.00000633244923684870 0.00000824096488969802 0.000007586642831239370.00000520510006112426-0.0000000332979660009276 -0.0000000249428033579244 -0.0000000315648221042745 -0.0000000228005067418939 Curve ipsometriche 40 tariffa 1 tariffa 2 35 tariffa 3 tariffa 4 tariffa 5 tariffa 6 tariffa 7 30 tariffa 8 tariffa 9 25 altezza (m) 20 15 10 5 0 40 0 10 20 30 50 60 70 80 90 diametro (cm)

NUOVE TARIFFE DI CUBATURA DEL LARICE

Larix decidua Mill.

TAVOLA 1 – diametri da 5 a 45 cm

d		1		2		3		4		5		6		7		8		9
<u> </u>	h ₁	V ₁	h ₂	V ₂	h ₃	V ₃	h ₄	V ₄	h ₅	V ₅	h ₆	V ₆	h ₇	V ₇	h ₈	V 8	h ₉	V 9
5	7.2	0.002	6.9	0.002	6.6	0.002	6.2	0.002	5.8	0.002	5.6	0.002	5.2	0.001	4.7	0.001	4.4	0.001
6	8.3 (.006	7.9	0.006	7.5 0.0	05	7.1	0.005	6.70	.004	6.4	0.004	6.00	.004	5.4	0.003	4.90	.003
7	9.3 (.012	8.9	0.011	B.4 0.0	10	8.0	0.009	7.50		7.1	0.008	6.60	.007	6.0	0.006	5.50	.006
8	10.3) .019	9.8		9.3 0.0	17	8.8	0.016	8.30		7.9	0.013	7.3 0	.012	6.6	0.010	6.00	.009
9	11.2	0.029	10.7	0.027	10.2	0.025	9.6	0.023	9.00		8.6	0.020	8.0 0	.018	7.1	0.016	6.4 0	.014
10	12.1	0.041	11.6	0.038	11.0	0.036	10.4	0.033	9.8	0.031	9.3	0.028	8.6	0.026	7.7	0.022	6.9	0.019
11		0.055	12.4	0.052	11.8	0.049	11.1	0.045	10.5	0.041	9.9	0.038	9.20		8.2	0.030	7.4 0	
12		0.072	13.2	0.068	12.6	0.063	11.8	0.058	11.2	0.054	10.6	0.050	9.80	.045	8.7	0.039	7.80	
13	14.6	D.091	14.0	0.086	13.3	0.080		0.074	11.8	0.069	11.2	0.064	10.4	0.058	9.2	0.049	8.2 0	
14		0.113	14.7	0.106	14.0	0.099	13.2	0.092	12.5	0.085	11.8	0.079	10.9	0.071	9.7	0.061	8.60	
15	16.2	•	15.4	0.129	14.7	0.121	13.9	0.112	13.1	0.104	12.4	0.096	11.5	0.087	10.2	0.074	9.0	0.062
16		D.164	16.1	0.154	15.4	0.145	14.5	0.134	13.7	0.124	13.0	0.115	12.0	0.104	10.6	0.088	9.3 0	
17		D.193	16.8	0.182	16.1	0.171	15.2	0.158	14.3	0.147	13.5	0.135	12.5	0.122	11.1	0.104	9.7 0	
18		0.225	17.5	0.212	16.7	0.199		0.185	14.9	0.171	14.0	0.158	13.0	0.142	11.5	0.121	10.0	0.101
19		0.260	18.1	0.244	17.3	0.230	16.4	0.213	15.5	0.198	14.6	0.183	13.5	0.164	11.9	0.140	10.4	0.115
20	19.6	0.297	18.7	0.279	17.9	0.263	16.9	0.244	16.0	0.227	15.1	0.209	13.9	0.188	12.3	0.160	10.7	0.131
21		D.336	19.3	0.317	18.5	0.299	17.5	0.277	16.6	0.258	15.6	0.237	14.4	0.213	12.7	0.181	11.0	0.148
22		0.379	19.9	0.357	19.1	0.337		0.313	17.1	0.291	16.1	0.267	14.8	0.240	13.1	0.203	11.2	0.166
23		0.424	20.5	0.399	19.6	0.377	18.6	0.350	17.6	0.326	16.5	0.299	15.2	0.269	13.5	0.227	11.5	0.184
24		0.471	21.0		20.1	0.419	19.1	0.390	18.1	0.363	17.0	0.333	15.6	0.299	13.8	0.253	11.8	0.204
25	22.5	-	21.5	0.491	20.7	0.464	19.6	0.432	18.5	0.402	17.4	0.369	16.0	0.330	14.1	0.279	12.0	0.225
26		0.574	22.1	ļ	21.2	0.511	20.1	0.476	19.0	0.443	17.8	0.407	16.4	0.364	14.5	0.307	12.3	0.246
27		0.629	22.6	0.593		0.561	20.5	0.523	19.4	0.486	18.2	0.446	16.8	0.398	14.8	0.336	12.5	0.268
28		0.687	23.0	ļ	22.1	0.612	21.0	0.571	19.9	0.531	18.7	0.487	17.1	0.434	15.1	0.367	12.7	0.291
29 30	24.0 25.1	0.747 0.810	23.5 24.0	0.705 0.764	23.0	0.666 0.722	21.4 21.9	0.622 0.675	20.3 20.7	0.577 0.626	19.0 19.4	0.530 0.575	17.5 17.8	0.472 0.511	15.4 15.7	0.398 0.431	12.9 13.1	0.315 0.340
31		0.875	24.4		23.4	0.722	22.3	0.073	21.1	0.626	19.4	0.622	18.1	0.552	15.7	0.465	13.1	0.365
32		0.673	24.4	0.890	•	0.761	22.7	0.729	21.5	0.729	20.1	0.670	18.4	0.552	16.2	0.403	13.5	0.303
33		1.013	25.3		24.3	0.903	23.1	0.760	21.8	0.723	20.5	0.720	18.7	0.637	16.5	0.536	13.7	0.418
34		1.086	25.7	†	24.7	0.968	23.5	0.906	22.2	0.839	20.8	0.771	19.0	0.682	16.7	0.573	13.8	0.445
35	27.3	1.161	26.2	1.025	25.1	1.035	23.9	0.969	22.5	0.897	21.2	0.824	19.3	0.728	16.9	0.612	14.0	0.474
36		1.238	26.6		25.4	1.103	24.2	1.034	22.9	0.956	21.5	0.879	19.6	0.775	17.2	0.651	14.2	0.503
37		1.317	26.9	1.244		1.174	24.6	1.100	23.2	1.017	21.8	0.935	19.8	0.823	17.4	0.691	14.3	0.532
38		1.399	27.3	į	26.2	1.246	24.9	1.169	23.5	1.080	22.1	0.993	20.1	0.873	17.6	0.732	14.5	0.562
39		1.483	27.7	ţ	26.5	1.321	25.3	1.239	23.8	1.144	22.4	1.052	20.3	0.924	17.8	0.774	14.6	0.593
40	29.3	1.569	28.1	1.483	26.8	1.397	25.6	1.311	24.1	1.209	22.6	1.112	20.5	0.976	18.0	0.817	14.7	0.625
41		1.658	28.4		27.2	1.475	25.9	1.385	24.4	1.276	22.9	1.174	20.8	1.028	18.2	0.861	14.9	0.657
42		1.748	28.8	 	27.5	1.555	26.2	1.460	24.7	1.345	23.2	1.237	21.0	1.082	18.4	0.906	15.0	0.689
43		1.841	29.1	1.740		1.637	26.5	1.537	24.9	1.414	23.4	1.301	21.2	1.137	18.5	0.951	15.1	0.722
44		1.935	29.4	ļ	28.1	1.720	26.8	1.616	25.2	1.485	23.7	1.367	21.4	1.193	18.7	0.998	15.2	0.756
45		2.031	29.7	1.921	28.4	1.806	27.1	1.696	25.4	1.558	23.9	1.433	21.6	1.250	18.9	1.045	15.3	0.791
		-																

TAVOLA 2 – diametri da 46 a 85 cm

d	,	1		2		3		4		5		6		7		8		9
u	h ₁	V ₁	h ₂	V_2	h ₃	V ₃	h ₄	V ₄	h ₅	V ₅	h ₆	V ₆	h ₇	V ₇	h ₈	V 8	h ₉	V 9
46	31.3	2.129	30.0	2.015	28.7	1.892	27.4	1.778	25.7	1.631	24.1	1.501	21.8	1.308	19.0	1.092	15.4	0.825
47	31.6	2.229	30.3	2.109	28.9	1.980	27.6	1.861	25.9	1.706	24.3	1.570	21.9	1.367	19.2	1.141	15.5	0.861
48	31.9	2.331	30.6	2.206	29.2	2.070	27.9	1.945	26.1	1.782	24.5	1.639	22.1	1.426	19.3	1.190	15.6	0.897
49	32.2	2.434	30.9	2.304	29.4	2.161	28.1	2.030	26.3	1.859	24.7	1.710	22.3	1.486	19.5	1.240	15.7	0.933
50	32.5	2.539	31.2	2.404	29.7	2.254	28.3	2.117	26.5	1.937	24.9	1.781	22.4	1.547	19.6	1.290	15.8	0.970
51	32.7	2.645	31.4	2.505	29.9	2.348	28.6	2.205	26.7	2.016	25.1	1.854	22.6	1.609	19.7	1.341	15.9	1.008
52	33.0	2.753	31.7	2.607	30.2	2.443	28.8	2.294	26.9	2.096	25.3	1.926	22.7	1.671	19.8	1.392	16.0	1.046
53	33.2		31.9	2.711		2.539	29.0	2.384	27.1	2.177	25.4	2.000	22.9	1.734	20.0	1.444	16.1	1.084
54	33.5	2.972	32.1	2.815	30.6	2.637	29.2	2.475	27.3	2.259	25.6	2.074	23.0	1.798	20.1	1.497	16.2	1.124
55		3.083	32.4	2.921	30.8	2.735		2.567		2.342	25.7	2.149	23.1	1.862	20.2	1.550	16.3	1.163
56	33.9	3.195	32.6	3.028	31.0	2.835	29.6	2.660	27.6	2.425	25.9	2.225	23.3	1.927	20.3	1.603	16.4	1.203
57	34.1	3.308	32.8	3.136	31.2	2.936	29.7	2.753	27.7	2.509	26.0	2.300	23.4	1.993	20.4	1.657	16.4	1.244
58	34.3	3.422	33.0	3.245	31.4	3.037	29.9	2.847	27.9	2.594	26.1	2.377	23.5	2.058	20.5	1.711	16.5	1.284
59	34.5		33.1	3.354	31.6	3.140	30.1	2.942	28.0	2.679	26.3	2.453	23.6	2.125	20.5	1.766	16.6	1.326
60	34.7	3.653	33.3	3.465	31.7	3.243	30.2	3.037	28.2	2.765	26.4	2.530	23.7	2.191	20.6	1.821	16.7	1.368
61	34.8		33.5	3.576		3.347	30.4			2.852	26.5	2.607	23.8	2.259	20.7	1.876		
62	35.0	3.886	33.7	3.687	32.0	3.452	30.5	3.230	28.4	2.939	26.6	2.685	23.9	2.326	20.8	1.932		
63	35.2		33.8	3.799		3.558	30.6	3.326	28.5	3.026	26.7	2.762	24.0	2.394	20.9	1.988		
64	35.3	1.121	33.9	3.911	32.3	3.664	30.7	3.424	28.6	3.114	26.7	2.840	24.0	2.462	20.9	2.044		L
65		4.240	34.1	4.024	32.5	3.770	30.8	3.521	28.7	3.203	26.8	2.918	24.1	2.531	21.0	2.100		
66	35.6	1.358	34.2	4.137		3.877	31.0	3.619	28.8	3.292	26.9	2.996	24.2	2.600	21.0	2.157		
67	35.7		34.3	4.251		3.985	31.1	3.717	28.9	3.381	27.0	3.075	24.3	2.669	21.1	2.214		
68	35.8	1.597	34.4	4.364	32.8	4.093	31.1	3.816	29.0	3.470	27.0	3.153	24.3	2.738	21.2	2.271		ļ
69	35.9	1.716	34.5	4.478		4.202	31.2	3.914	29.1	3.560	27.1	3.232	24.4	2.807	21.2	2.328		
70		4.836	34.6	4.592		4.311	31.3	4.013	29.2	3.650	27.1	3.310	24.4	2.877	21.3	2.385		
71	36.1		34.7	4.706		4.420		4.112	29.3	3.740	27.2	3.389	24.5	2.947				ļ
72	36.2	5.077	34.8	4.821		4.530		4.212	29.3	3.831	27.2	3.468	24.5	3.017				,
73	36.3		34.9	4.936		4.639	31.5	4.311	29.4	3.921	27.3	3.547	24.6	3.087				ļ
74	36.3		35.0	5.051	33.4	4.750	31.6	4.411	29.4	4.012	27.3	3.627	24.6	3.157				
75		5.442	35.0	5.166	33.5	4.860	31.7	4.512	29.5	4.103	27.4	3.706	24.7	3.228				
76	36.5		35.1	5.282		4.971	31.7	4.612	29.6	4.195	27.4	3.787	24.7	3.298				ļ
77	36.6		35.2	5.399		5.083	31.8	4.714	29.6	4.286	27.4	3.867	24.7	3.369				
78	36.6		35.2	5.516		5.195		4.815	29.7	4.378	27.5	3.949	24.8	3.440				
79	36.7		35.3	5.634		5.307	31.9	4.918	29.7	4.470	27.5	4.031	24.8	3.511				ļ,
80		6.066	35.4	5.753	33.8	5.420	31.9	5.021	29.7	4.562	27.5	4.114	24.8	3.582				
81	36.9		35.4	5.874		5.533	32.0	5.126	29.8	4.654	27.6	4.198	24.9	3.653				
82	36.9		35.5	5.996		5.647	32.1	5.231	29.8	4.747	27.6	4.283	24.9	3.724				Ļ
83	37.0		35.5	6.119	34.0	5.762	32.1	5.338	29.8	4.840	27.7	4.370	24.9	3.795				
84	37.1		35.6	6.245	34.0	5.878	32.2	5.446	29.9	4.933	27.7	4.458	24.9	3.867				
85	37.2	6.735	35.7	6.373	34.1	5.995	32.2	5.556	29.9	5.027	27.8	4.548	24.9	3.938				

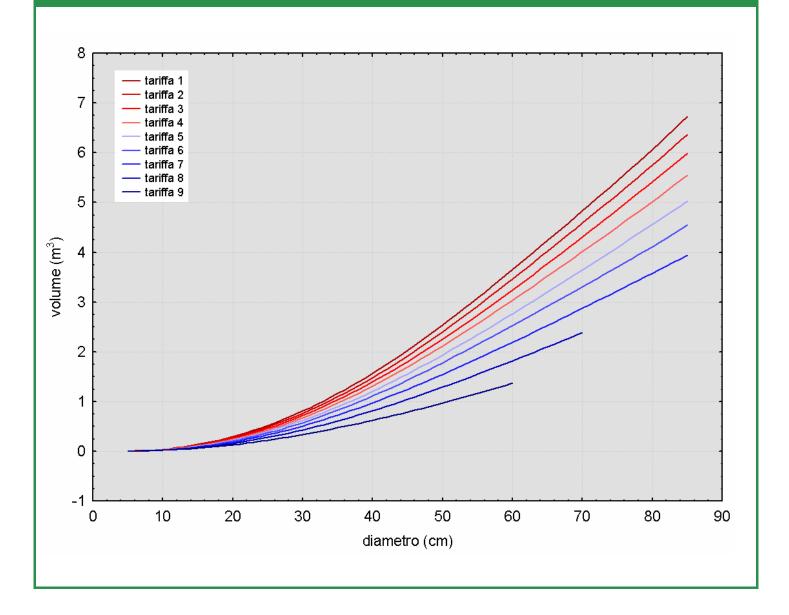
TAVOLA 3 - classi diametriche 5 cm

	d		1		2		3		4		5		6		7		8		9
	u	h ₁	V ₁	h ₂	V ₂	h ₃	V ₃	h ₄	V ₄	h ₅	V ₅	h ₆	V ₆	h ₇	V ₇	h ₈	V 8	h ₉	V 9
5	02	7.2	0.002	6.9	0.002	6.6	0.002	6.2	0.002	5.8	0.002	5.6	0.002	5.2	0.001	4.7	0.001	4.4	0.001
10	01	12.1	0.041	11.6	0.038	11.0	0.036	10.4	0.033	9.8	0.031	9.3	0.028	8.6	0.026	7.7	0.022	6.9	0.019
15	0	16.2	0.137	15.4	0.129	14.7	0.121	13.9	0.112	13.1	0.104	12.4	0.096	11.5	0.087	10.2	0.074	9.0	0.062
20	1	19.6	0.297	18.7	0.279	17.9	0.263	16.9	0.244	16.0	0.227	15.1	0.209	13.9	0.188	12.3	0.160	10.7	0.131
25	2	22.5	0.521	21.5	0.491	20.7	0.464	19.6	0.432	18.5	0.402	17.4	0.369	16.0	0.330	14.1	0.279	12.0	0.225
30	3	25.1	0.810	24.0	0.764	23.0	0.722	21.9	0.675	20.7	0.626	19.4	0.575	17.8	0.511	15.7	0.431	13.1	0.340
35	4	27.3	1.161	26.2	1.096	25.1	1.035	23.9	0.969	22.5	0.897	21.2	0.824	19.3	0.728	16.9	0.612	14.0	0.474
40	5	29.3	1.569	28.1	1.483	26.8	1.397	25.6	1.311	24.1	1.209	22.6	1.112	20.5	0.976	18.0	0.817	14.7	0.625
45	6	31.0	2.031	29.7	1.921	28.4	1.806	27.1	1.696	25.4	1.558	23.9	1.433	21.6	1.250	18.9	1.045	15.3	0.791
50	7	32.5	2.539	31.2	2.404	29.7	2.254	28.3	2.117	26.5	1.937	24.9	1.781	22.4	1.547	19.6	1.290	15.8	0.970
55	8	33.7	3.083	32.4	2.921	30.8	2.735	29.4	2.567	27.4	2.342	25.7	2.149	23.1	1.862	20.2	1.550	16.3	1.163
60	9	34.7	3.653	33.3	3.465	31.7	3.243	30.2	3.037	28.2	2.765	26.4	2.530	23.7	2.191	20.6	1.821	16.7	1.368
65	10	35.4	4.240	34.1	4.024	32.5	3.770	30.8	3.521	28.7	3.203	26.8	2.918	24.1	2.531	21.0	2.100		
70	11	36.0	4.836	34.6	4.592	33.0	4.311	31.3	4.013	29.2	3.650	27.1	3.310	24.4	2.877	21.3	2.385		
75	12	36.4	5.442	35.0	5.166	33.5	4.860	31.7	4.512	29.5	4.103	27.4	3.706	24.7	3.228				
80	13	36.8	6.066	35.4	5.753	33.8	5.420	31.9	5.021	29.7	4.562	27.5	4.114	24.8	3.582				
85	14	37.2	6.735	35.7	6.373	34.1	5.995	32.2	5.556	29.9	5.027	27.8	4.548	24.9	3.938				

MODELLO A DOPPIA ENTRATA MV2

Struttura funzionale

$$v = a \times (d - d_0)^b \times h^c$$

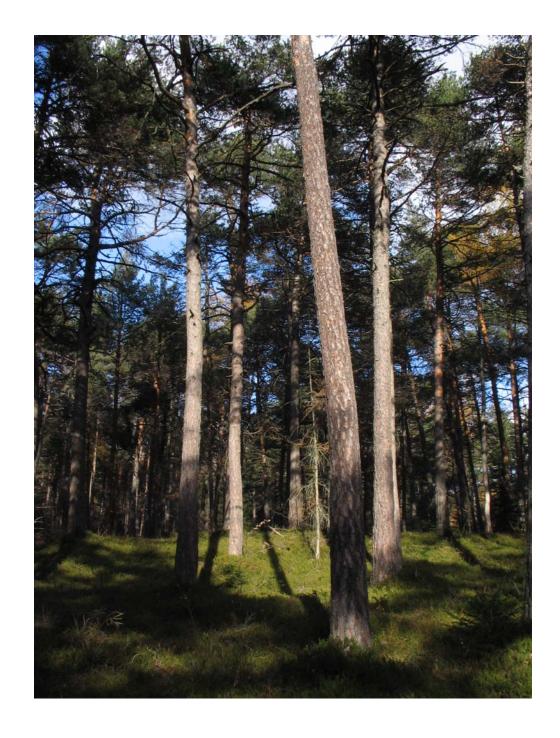

Unità di misura

V	d	h
m³ cm		m

Parametri della funzione

а	b	С	d _o
0.000107820129127088	1 40775581651764	1 34137722851875	3 69465

Curve stereometriche



NUOVE TARIFFE DI CUBATURA DEL LARICE – Larix decidua Mill. **M**ODELLI IPSOMETRICI Struttura funzionale $h = 1.30 + b_1 d + b_2 d^2 + b_3 d^3 + b_4 d^4 + b_5 d^5$ Unità di misura h d m c m Parametri delle funzioni Tariffa 1 Tariffa 2 Tariffa 3 Tariffa 4 Tariffa 5 1.24616774659729 1.15079184034974 1.069999152971960 976735427916441 1.31732068351736 b_1 -0.0277429626582718 -0.0257236863905608 -0.0207258080035654 -0.0187995634686115 -0 014480793177091 b_2 0.000427379042756368 bз 0.000466727240901007 0.000268643992511396 00014291693665576 0.000283077996610427 b₄ -0.00000476803918354418 -0.00000432653178233126 -0.0000025025544394757 -0.00000262616077426383 00000102112778710952 b_5 0.0000000195253819975482 0.00000001751381800860950.00000000935819868546977 0.00000001079795814727330000000354881207317334 Tariffa 6 Tariffa 7 Tariffa 9 Tariffa 8 b_1 0.933261562624184 0.849422649931721 0.738283460551023 0.676337892187883 b_2 -0.0156938674163838 -0.0130410020944966 -0.0108796891424147 -0.0126549090266761 0.000119649868495366 b₃ 0.000122435643236745 0.000083240918621902 0.00021293764647882 b₄ -0.0000021296270864916 -0.000000761505075680516 -0.000000299802690866207 -0.00000036664879032602 0.00000000922174826688834 0.00000000135678516677951 0.00000000230218230137239 -0.000000000965180759280312 Curve ipsometriche 40 tariffa 1 tariffa 2 tariffa 3 35 tariffa 4 tariffa 5 tariffa 6 tariffa 7 30 tariffa 8 tariffa 9 25 altezza (m) 20 15 10 5 0 0 10 20 30 40 50 60 70 diametro (cm)

NUOVE TARIFFE DI CUBATURA DEL PINO SILVESTRE -Pinus sylvestris L.

NUOVE TARIFFE DI CUBATURA DEL PINO SILVESTRE – Pinus sylvestris L.

TAVOLA 1 – diametri da 5 a 65 cm

	1		2		3		4		5		6		7		8		9
d	h ₁ v ₁	h ₂	V ₂	h ₃	V ₃	h ₄	v ₄	h ₅	V ₅	h ₆	V ₆	h ₇	ν ₇	h ₈	V ₈	h ₉	V ₉
5	7.8 0.001	6.9	0.001	6.3	0.001	5.5	0.001	5.0	0.001	4.5	0.001	4.3	0.001	3.6	0.000	2.9	0.000
6	9.0 0.003	8.0	0.003	·	0.003	6.4	0.001	5.8 0		5.2	0.001		0.001	4.1	0.002		0.001
7	10.2 0.007	9.1	0.006	······	0.006	7.3	0.002	6.6 0		5.9	0.002 4		0.002	4.6	0.002		0.003
8	11.3 0.013	10.1	0.011	· ·	0.011	8.2	0.010	7.5 0		6.7	0.004 6		0.008	5.1	0.007	•	0.005
9	12.4 0.020	11.2	0.019	·····	0.017	9.1	0.016	8.3 0	·	7.4	0.013 6		0.012	5.7	0.011	• • • • • • • • • • • • • • • • • • • •	0.009
10	13.4 0.030	12.2	0.028	11.2	0.026	10.0	0.024	9.1	0.022	8.2	0.020	7.4	0.018	6.2	0.016	5.0	0.013
11	14.5 0.042	13.2		2.2	0.037	10.9	0.033	9.9 0		8.9	0.028 8		0.026	6.8	0.023		0.019
12	15.4 0.057	14.2	0.053	3.1	0.050	11.7	0.046	10.7	0.042	9.6	0.039 8		0.035	7.3	0.031	• • • • • • • • • • • • • • • • • • • •	0.026
13	16.4 0.075	15.1	0.070	4.0	0.066	12.6	0.060	11.5	0.056	10.3	0.051 9	.1	0.046	7.8	0.041	.2	0.034
14	17.3 0.095	16.0	0.089	4.9	0.084	13.4	0.077	12.3	0.072	11.0	0.066 9	.7	0.059	8.3	0.052	6 <mark>.7</mark>	0.043
15	18.2 0.118	16.9	0.111	15.7	0.105	14.2	0.097	13.0	0.090	11.7	0.082	10.3	0.074	8.8	0.065	7.1	0.054
16	19.0 0.145	17.7	0.137	6.6	0.129	15.0	0.119	13.7	0.111	12.4	0.101 1	0.8	0.091	9.3	0.080	7.4	0.066
17	19.8 0.174	18.5	0.165	7.4	0.156	15.8	0.144	14.4	0.134	13.0	0.123 1	1.3	0.110	9.8	0.097	<mark>7</mark> .8	0.080
18	20.6 0.206	19.3	0.196	8.1	0.186	16.5	0.172	15.1	0.160	13.7	0.147 1		0.131	10.3	0.116	.2	0.096
19	21.3 0.242	20.0	0.230	<u>*</u>	0.218	17.2	0.203	15.8	0.188	14.3	0.173 1		0.154	10.7	0.137	•	0.113
20	22.0 0.280	20.8	0.267	19.5	0.254	17.9	0.236	16.4	0.220	14.8	0.202	12.8	0.179	11.1	0.159	8.9	0.132
21	22.7 ().322	21.4	0.308 2	<mark>.</mark>	0.293	18.6	0.273	17.0	0.254	15.4	0.233 1		0.207	11.5	0.184	· · · · · · · · · · · · · · · · · · ·	0.153
22	23.3 0.367	22.1	0.351 2	***************************************	0.334	19.2	0.312	17.5	0.290	15.9	0.267 1		0.236	11.9	0.211	•••••••••••••••••••	0.175
23	23.9 0.415	22.7	0.398 2		0.379	19.8	0.355	18.1	0.329	16.4	0.304 1		0.268	12.3	0.239	•	0.198
24	24.5 0.467	23.2	0.447 2	*	0.426	20.3	0.400	18.6	0.371	16.9	0.342 1		0.302	12.7	0.270	•	0.224
25	25.0 0.521	23.8	0.500	22.5	0.477	20.8	0.448	19.1	0.416	17.3	0.384	14.9	0.339	13.0	0.302	10.4	0.251
26	25.6 0.579	24.3	0.555 2 0.614 2	· <mark>*</mark>	0.530	21.3 21.8	0.499	19.5	0.463	17.7	0.427 1		0.377	13.3	0.337	• • • • • • • • • • • • • • • • • • •	0.279
27 28	26.1 0.640 26.5 0.705	24.8 25.2	0.676 2	·	0.587	22.2	0.552 0.608	19.9 20.3	0.513 0.565	18.1 18.5	0.473 1 0.521 1		0.418 0.461	13.6 13.9	0.373	• • • • • • • • • • • • • • • • • • • •	0.309 0.341
29	27.0 0.772	25.7	0.070 2	*	0.708	22.6	0.667	20.7	0.620	18.8	0.572 1		0.506	14.1	0.450	•	0.374
30	27.4 0.842	26.1	0.808	24.7	0.772	23.0	0.729	21.1	0.677	19.1	0.625	16.5	0.553	14.3	0.492	11.5	0.408
31	27.8 0.916	26.4	0.878 2		0.839	23.4	0.793	21.4	0.736	19.4	0.680 1		0.602	14.6	0.535		0.444
32	28.2 0.992	26.8	0.951 2	· 	0.909	23.7	0.859	21.7	0.798	19.7	0.736 1		0.653	14.8	0.580	• • • • • • • • • • • • • • • • • • • •	0.482
33	28.6 1.072	27.1	1.027 2	•	0.982	24.0	0.928	22.0	0.862	19.9	0.796 1		0.706	15.0	0.627	•	0.520
34	28.9 1.154	27.4	1.105 2	·	1.057	24.3	1.000	22.2	0.929	20.2	0.857 1		0.761	15.1	0.675	**	0.560
35	29.2 1.240	27.7	1.187	26.2	1.134	24.6	1.074	22.5	0.997	20.4	0.920	17.7	0.818	15.3	0.724	12.2	0.601
36	29.5 1.328	28.0	1.271 2	6.5	1.214	24.8	1.150	22.7	1.068	20.6	0.985 1	7.9	0.877	15.4	0.776	12.3	0.644
37	29.8 1.420	28.2	1.357 2	6.7	1.297	25.0	1.228	22.9	1.141	20.8	1.052 1	8.1	0.938	15.6	0.828	<mark>1</mark> 2.4	0.687
38	30.1 1.514	28.5	1.447 2	6.9	1.381	25.2	1.309	23.1	1.216	20.9	1.121 1	8.3	1.001	15.7	0.883	<mark>1</mark> 2.5	0.732
39	30.3 1.611	28.7	1.539 2	7.1	1.469	25.4	1.392	23.3	1.293	21.1	1.192 1	8.4	1.065	15.8	0.939	<mark>1</mark> 2.6	0.778
40	30.6 1.711	28.9	1.633	27.3	1.559	25.6	1.477	23.4	1.373	21.2	1.264	18.6	1.132	15.9	0.996	12.7	0.826
41	30.8 1.814	29.1	1.730 2	•	1.651	25.8	1.565	23.6	1.454	21.4	1.339 1		1.200	16.0	1.055	·······	0.874
42	31.0 1.920	29.3	1.830 2	•	1.746	25.9	1.655	23.8	1.538	21.5	1.416 1		1.271	16.1	1.115	•••••••••••••••••••••••••••••••••••••••	0.924
43	31.2 2.028	29.5	1.933 2	·	1.843	26.1	1.747	23.9	1.624	21.6	1.495 1		1.343	16.2	1.177	**************************************	0.975
44	31.4 2.140	29.7	2.039 2	·	1.943	26.2	1.841	24.0	1.713	21.7	1.575 1		1.417	16.3	1.241	**************************************	1.027
45	31.6 2.254	29.8	2.147	28.1	2.045	26.4	1.938	24.2	1.804	21.8	1.658	19.3	1.494	16.4	1.306	13.0	1.080
46 47	31.8 2.371 32.0 2.490	30.0 30.1	2.258 2 2.372 2		2.150 2.258	26.5 26.6	2.037 2.139	24.3 24.4	1.897 1.992	22.0 22.1	1.743 1 1.830 1		1.572 1.652	16.5 16.6	1.373 1.442	·······	1.135 1.191
48	32.1 2.613	30.3	2.488 2		2.369	26.7	2.243	24.6	2.090	22.2	1.919 1		1.734	16.6	1.512	• • • • • • • • • • • • • • • • • • • •	1.248
49	32.3 2.738	30.5	2.608 2		2.482	26.8	2.349	24.7	2.191	22.3	2.010 1		1.818	16.7	1.584		1.307
50	32.4 2.866	30.6	2.731	*	2.598	27.0	2.458	24.8	2.294	22.4	2.104		1.904	16.8	1.658		1.367
51	32.6 2.997	30.7	2.856 2		2.716	27.1	2.570	24.9	2.399	22.5	2.200 1		1.992	16.9	1.734		1.429
52	32.7 3.131	30.9	2.985 2	,	2.838	27.2	2.684	25.0	2.507	22.5	2.298 2		2.081	16.9	1.812		1.492
53	32.9 3.268	31.0	3.116 2		2.962	27.3	2.800	25.2	2.618	22.6	2.399 2		2.173	17.0	1.891		1.556
54	33.0 3.407	31.2	3.251 2		3.089	27.4	2.919	25.3	2.731	22.7	2.502 2		2.267	17.1	1.972		1.622
55	33.1 3.549	31.3	3.388		3.219	27.5	3.041	25.4	2.846	22.8	2.607		2.362	17.2	2.056	13.5	1.689
56	33.2 3.694	31.4	3.528 2		3.352	27.6	3.165	25.5	2.964	22.9	2.714 2	0.4	2.460	17.2	2.140		1.758
57	33.4 \$.842	31.6	3.671 2		3.487	27.7	3.292	25.6	3.084	23.0	2.823 2		2.558	17.3	2.227	<mark>1</mark> 3.6	1.828
58	33.5 3.993	31.7	3.816 2	9.8	3.624	27.8	3.421	25.7	3.206	23.1	2.934 2		2.659	17.4	2.315	<mark>1</mark> 3.7	1.899
59	33.6 4.146	31.8	3.964 2		3.763	27.9	3.552	25.8	3.330	23.2	3.047 2		2.760	17.4	2.404	* <mark>*</mark> **********************************	1.972
60	33.7 4.302	31.9	4.114		3.905	27.9	3.685	25.9	3.455	23.2	3.161		2.863	17.5	2.495		2.046
61	33.8 4.460	32.0	4.266	·	4.048	28.0	3.819	25.9	3.581	23.3	3.277 2		2.967	17.5	2.587	• • • • • • • • • • • • • • • • • • • •	2.120
62	33.9 4.621	32.1	4.420	-	4.192	28.1	3.955	26.0	3.708	23.3	3.392 2		3.071	17.6	2.679	•	2.196
63	34.0 4.785	32.2	4.575		4.336	28.1	4.091	26.0	3.834	23.4	3.509 2		3.176	17.6	2.771		2.271
64	34.0 4.951	32.2	4.730 3	·	4.481	28.1	4.228	26.0	3.960	23.4	3.624 2	***************************************	3.280	17.6	2.863	······	2.347
65	34.1 5.119	32.2	4.886	30.2	4.625	28.1	4.364	26.0	4.085	23.4	3.739	20.7	3.383	17.6	2.955	13.9	2.423

NUOVE TARIFFE DI CUBATURA DEL PINO SILVESTRE – Pinus sylvestris L.

TAVOLA 3 - classi diametriche 5 cm

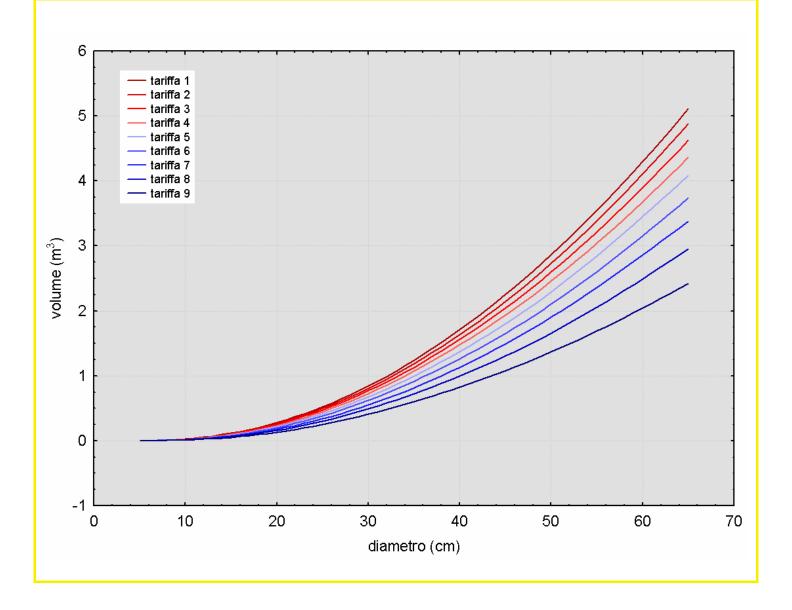
	d		1		2		3		4		5		6		7		8		9
· ·	4	h ₁	V ₁	h ₂	V ₂	h ₃	V ₃	h ₄	V ₄	h ₅	V ₅	h_6	V ₆	h ₇	V ₇	h ₈	V 8	h ₉	V ₉
5	02	7.8	0.001	6.9	0.001	6.3	0.001	5.5	0.001	5.0	0.001	4.5	0.001	4.3	0.001	3.6	0.000	2.9	0.000
10	01	13.4	0.030	12.2	0.028	11.2	0.026	10.0	0.024	9.1	0.022	8.2	0.020	7.4	0.018	6.2	0.016	5.0	0.013
15	0	18.2	0.118	16.9	0.111	15.7	0.105	14.2	0.097	13.0	0.090	11.7	0.082	10.3	0.074	8.8	0.065	7.1	0.054
20	1	22.0	0.280	20.8	0.267	19.5	0.254	17.9	0.236	16.4	0.220	14.8	0.202	12.8	0.179	11.1	0.159	8.9	0.132
25	2	25.0	0.521	23.8	0.500	22.5	0.477	20.8	0.448	19.1	0.416	17.3	0.384	14.9	0.339	13.0	0.302	10.4	0.251
30	3	27.4	0.842	26.1	0.808	24.7	0.772	23.0	0.729	21.1	0.677	19.1	0.625	16.5	0.553	14.3	0.492	11.5	0.408
35	4	29.2	1.240	27.7	1.187	26.2	1.134	24.6	1.074	22.5	0.997	20.4	0.920	17.7	0.818	15.3	0.724	12.2	0.601
40	5	30.6	1.711	28.9	1.633	27.3	1.559	25.6	1.477	23.4	1.373	21.2	1.264	18.6	1.132	15.9	0.996	12.7	0.826
45	6	31.6	2.254	29.8	2.147	28.1	2.045	26.4	1.938	24.2	1.804	21.8	1.658	19.3	1.494	16.4	1.306	13.0	1.080
50	7	32.4	2.866	30.6	2.731	28.8	2.598	27.0	2.458	24.8	2.294	22.4	2.104	19.8	1.904	16.8	1.658	13.3	1.367
55	8	33.1	3.549	31.3	3.388	29.4	3.219	27.5	3.041	25.4	2.846	22.8	2.607	20.3	2.362	17.2	2.056	13.5	1.689
60	9	33.7	4.302	31.9	4.114	30.0	3.905	27.9	3.685	25.9	3.455	23.2	3.161	20.6	2.863	17.5	2.495	13.8	2.046
65	10	34.1	5.119	32.2	4.886	30.2	4.625	28.1	4.364	26.0	4.085	23.4	3.739	20.7	3.383	17.6	2.955	13.9	2.423

NUOVE TARIFFE DI CUBATURA DEL PINO SILVESTRE - Pinus sylvestris L.

MODELLO A DOPPIA ENTRATA MV2

Struttura funzionale

$$V = a \times (d - d_0)^b \times h^c$$


Unità di misura

V	d	h
m³ cm		m

Parametri della funzione

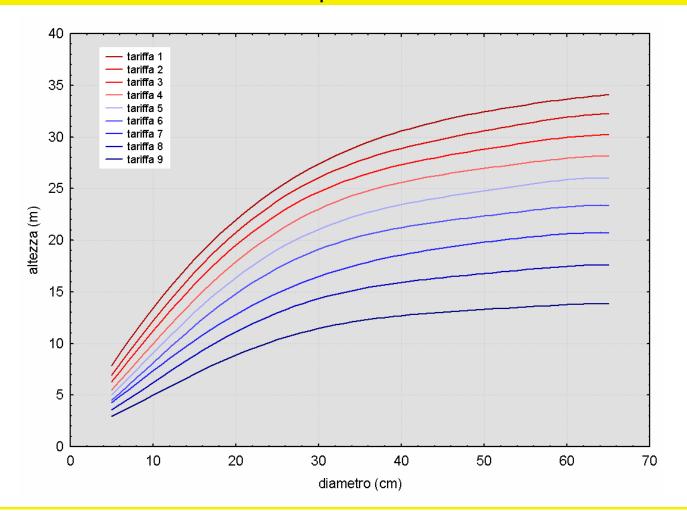
a	b	С	d_{o}
0.000101825735269425	1.91818421016015	0.830164143958094	3.69465

Curve stereometriche

NUOVE TARIFFE DI CUBATURA DEL PINO SILVESTRE - Pinus sylvestris L.

MODELLI IPSOMETRICI

Struttura funzionale

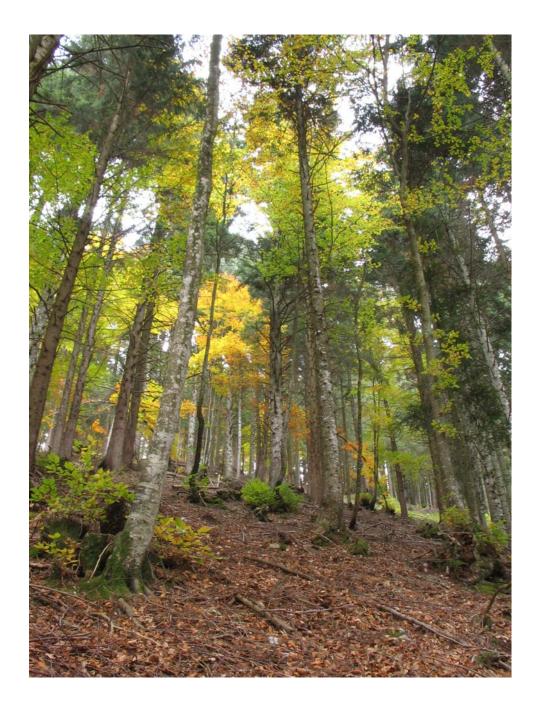

$$h = 1.30 + b_1 d + b_2 d^2 + b_3 d^3 + b_4 d^4 + b_5 d^5$$

Unità di misura

h				d
m c				m
	_	 		

		Para	metri delle funzior	ni	
	Tariffa 1	Tariffa 2	Tariffa 3	Tariffa 4	Tariffa 5
b ₁	1.39485528157834	1.11730423517553	0.950386398135421	0.755575894751024). 646262947472806
b ₂	-0.0173132562493727	0.00462820217612667	0.0140104801683463	0.0225225580166138). 0251106417221477
b ₃	-0.000111224369160071	-0.000876038876059999	-0.00114651910786276	-0.00131140501238242	0. 0013829182761359
b ₄	0.00000432818944905412	0.00001599268186786	0.0000196103997233256	0.0000208892488636416). 000022344663089834
b ₅	-0.0000000270804212705393	-0.0000000914662986407017	-0.000000109691886719991	-0.000000112182434878885 -	0. 000000122803922062264
	Tariffa 6	Tariffa 7	Tariffa 8	Tariffa 9	
b ₁	0.533239392042914	0.545339466215345	0.367950960101659	0.254005822037151	
b ₂	0.0268774627317926	0.01270700510322	0.0213786404638334	0.0189524654664182	
b ₃	-0.00137293395701313	-0.000784722373720131	-0.00105218673858519	-0.000870121043127567	
b ₄	0.0000216635612592482	0.0000126932785455457	0.000016443270222391	0.0000131424507015272	
	-0.000000117057138373594	-0.0000000696350073951958	-0.0000000883505738858313	- 0.000000068665465235719	
b_5	-0.000000117057136373594	-0.0000000096330073951936	-0.000000000000000000000000000000000000	- 0.0000000000004002537 19	

Curve ipsometriche



NUOVE TARIFFE DI CUBATURA DEL FAGGIO

Fagus selvatica L.

NUOVE Tariffe di cubatura del Faggio – *Fagus sylvatica* L.

TAVOLA 1 – diametri da 5 a 45 cm

d	1	1	2		3		4		5		6		7		8		9
u	h ₁	V ₁	h ₂ v ₂	h ₃	V ₃	h ₄	V ₄	h ₅	V ₅	h ₆	V ₆	h ₇	V ₇	h ₈	V 8	h ₉	V ₉
5				7.4	0.0004	6.8	0.0004	6.2	0.0003	5.6	0.0003	5.0	0.0003	4.4	0.0002	3.8	0.0002
6				8.4 C	.002	7.8	0.002 7	'.1	0.002	6.4	0.001 5	.7	0.001	5.0	0.001 4	.3	0.001
7				9.5 (.004	8.8	0.004 7	.9	0.004	7.2	0.003 6	.4	0.003	5.6	0.003 4	.8	0.002
8				10.5	0.009	9.7	0.008	.8	0.007	7.9	0.007 7	.0	0.006	6.1	0.005 5	.2	0.004
9				11.5	0.015	10.6	0.013 9	.6	0.012	8.6	0.011 7	.6	0.010	6.6	0.008 5	.6	0.007
10				12.5	0.023	11.5	0.021	10.3	0.019	9.3	0.017	8.2	0.015	7.1	0.013	6.1	0.011
11				13.4	0.033	12.3	0.030 1	1.1	0.027	10.0	0.024 8	.8	0.022	7.6	0.019 6	.5	0.016
12				14.3		13.1	0.042 1	1.8	0.038	10.6	0.034 9	.3	0.030	8.1	0.026 6	.9	0.022
13				15.2	0.061	13.9	0.056 1	2.5	0.050	11.2	0.045	.9	0.039	8.6	0.034 7	.3	0.029
14				16.0	0.079	14.6	0.072 1	3.2	0.065	11.8	0.058 1	0.4	0.051	9.0	0.044 7	.6	0.037
15				16.8	0.099	15.4	0.091	13.9	0.082	12.4	0.073	10.9	0.064	9.4	0.056	8.0	0.047
16				17.6		16.1	0.113 1		0.101	13.0	0.091 1	1.4	0.080	9.9	0.069 8		0.058
17				18.3		16.7	0.137 1		0.123	13.5	0.111 1		0.097	10.3	0.084 8	.7	0.071
18		,		19.0		17.4	0.165 1	<u>.</u>	0.148	14.0	0.133 1	2.3	0.116	10.7	0.100 9	.	0.085
19				19.7		18.0		6.2	0.176	14.5	0.157 1		0.138	11.0	0.119 9	<u>.</u>	0.100
20				20.4	0.250	18.6	0.228	16.8	0.206	15.0	0.184	13.2	0.161	11.4	0.139	9.6	0.117
21				21.0		19.2	0.265 1		0.239	15.5	0.213 1		0.187	11.7	0.161 9	<u>.</u>	0.136
22				21.6		19.7		7.8	0.274	15.9	0.245 1		0.215	12.1		0.2	0.157
23				22.2		20.3	0.347 1		0.313	16.3	0.280 1	<u>.</u>	0.246	12.4		0.5	0.179
24				22.7		20.8		8.7	0.354	16.8	0.317 1		0.278	12.7	0.240 1		0.202
25				23.3	0.485	21.3	0.443	19.2	0.399	17.1	0.357	15.1	0.313	13.0	0.270	11.0	0.228
26				23.8		21.7	0.495 1		0.446	17.5	0.399 1		0.350	13.3	0.302 1	<u>.</u>	0.255
27				24.3		22.2	0.551 2		0.496	17.9	0.444 1		0.390	13.6		1.4	0.283
28				24.7		22.6	0.610 2		0.550	18.2		6.0	0.431	13.8	0.372 1	<mark>:</mark>	0.314
29				25.2		23.0	0.672 2	•	0.606	18.5		6.3	0.475	14.1		1.9	0.346
30				25.6	0.808	23.4	0.737	21.1	0.665	18.9	0.594	16.6	0.522	14.3	0.450	12.1	0.379
31				26.0		23.7	0.806 2		0.726	19.1	0.649 1		0.570	14.5	0.492 1	-	0.415
32				26.4		24.1	0.877 2		0.791	19.4	0.707 1		0.621	14.7	0.536 1	2	0.452
33				26.7		24.4	0.952 2		0.859	19.7		7.3	0.674	15.0	0.582 1	<mark>?</mark>	0.491
34				27.1		24.7	1.030 2		0.929	20.0	0.830 1		0.730	15.1	0.629 1		0.531
35				27.4	1.218	25.0	1.111	22.6	1.002	20.2	0.896	17.8	0.787	15.3	0.679	12.9	0.573
36				27.7		25.3	1.195 2		1.078	20.4	0.963 1		0.847	15.5		3.1	0.616
37				28.0		25.5	1.282 2	•	1.156	20.6	1.034 1	<u>.</u>	0.908	15.7	0.784 1		0.661
38 39				28.3		25.8	1.371 2		1.237	20.8	1.106 1	<u></u>	0.972	15.8	0.839 1		0.708
-				28.5		26.0	1.464 2		1.321	21.0	1.181 1	<u> </u>	1.038	16.0	0.896 1		0.756
40				28.8	1.710	26.2	1.559	23.7	1.407	21.2	1.258	18.7	1.106	16.1	0.955	13.6	0.805
41				29.0 29.2		26.5 26.6	1.658 2		1.496 1.587	21.4		8.8 8.9	1.176 1.248	16.3 16.4	1.015 1 1.077 1		0.856 0.908
42				•			1.759 2			21.5							
43				29.4 29.6		26.8	1.862 2 1.968 2		1.681	21.7 21.8		9.1 9.2	1.322 1.397	16.5 16.6	1.141 1 1.206 1	3.9	0.962
44 45						27.0			1.777								1.017
43				29.8	2.279	27.1	2.077	24.5	1.875	22.0	1.677	19.3	1.475	16.7	1.273	14.1	1.073

NUOVE TARIFFE DI CUBATURA DEL FAGGIO – Fagus sylvatica L.

TAVOLA 2 – diametri da 46 a 85 cm

		1	2		3		4		5		6		7		8		9
d	h ₁	V ₁	h ₂	v ₂ h ₃	V ₃	h ₄	V 4	h ₅	V 5	h ₆	V ₆	h ₇	V 7	h ₈	V 8	h ₉	V ₉
46				29.9	2.401	27.3	2.188	24.7	1.976	22.1	1.767	19.4	1.554	16.8	1.342	14.2	1.130
47				30.	1 2.526	27.4	2.302	24.8	2.078	22.2	1.859	19.5	1.635	16.9	1.412	14.2	1.189
48				30.2	2.654	27.6	2.418	24.9	2.183	22.3	1.953	19.6	1.717	17.0	1.483	14.3	1.249
49				30.3	3 2.784	27.7	2.536	25.0	2.290	22.4	2.049	19.7	1.801	17.0	1.556	14.3	1.310
50				30.	2.917	27.8	2.657	25.1	2.399	22.5	2.147	19.8	1.887	17.1	1.631	14.4	1.372
51				30.6	3.052	27.9	2.780	25.2	2.510	22.5	2.246	19.8	1.975	17.2	1.706	14.4	1.435
52				30.	7 3.189	28.0	2.905	25.3	2.623	22.6	2.348	19.9	2.064	17.2	1.783	14.5	1.499
53				30.8	3.329	28.0	3.032	25.3	2.738	22.7	2.451	20.0	2.154	17.3	1.862	14.5	1.564
54				<mark>.</mark>	3 3.472	28.1	3.162	25.4	2.854	22.7	2.556	•	2.246	17.3	1.941	14.6	1.630
55					3.616	28.2	3.293	25.4		22.8	2.662		2.339	17.3	2.022	14.6	1.698
56				<mark>.</mark>	3.763	28.2	3.427	25.5	;	22.8	2.770	•	2.434	17.4	2.104	14.6	1.766
57				<mark>.</mark>	3.912	28.3	3.562	25.5	 	22.9	2.880	•	2.530	17.4	2.187	14.6	1.835
58					1 4.064	28.3	3.700	25.6		22.9	2.991	20.2	2.628	17.4	2.272	14.6	1.905
59					1 4.217	28.4	3.839	25.6		23.0	3.104		2.727	17.5	2.358	14.7	1.976
60					2 4.373	28.4	3.981		3.593	23.0	3.219		2.827	17.5	2.444	14.7	2.047
61					2 4.531	28.4	4.124	25.7	3.722	23.0	3.335		2.929	17.5	2.532	14.7	2.120
62			. <mark>.</mark>		2 4.691	28.4	4.270	25.7	3.853	23.0	3.453	•	3.032	17.5	2.621	14.7	2.194
63					3 4.853	28.5	4.417	25.7	3.985	23.1	3.572		3.136	17.5	2.712	14.7	2.268
64					3 5.017	28.5	4.566	25.7	4.119	23.1	3.693		3.242	17.5		14.7	2.344
65				31.	5.183	28.5	4.717	25.7	_	23.1	3.816		3.348	17.5	2.896	14.7	2.420
66				31.	3 5.351	28.5	4.870	25.7	ţ	23.1	3.940		3.457	17.5	2.990	14.7	2.497
67			·- <mark>-</mark>		3 5.522	28.5	5.025	25.7	4.532	23.1	4.066		3.566	17.6	3.084	14.7	2.575
68			. <mark>.</mark>		5.695	28.5 28.5		25.7	4.674 4.817	23.1 23.1	4.193 4.322	•	3.678 3.790	17.6	3.181 3.278	14.7 14.7	2.655 2.735
69 70				*********	3 5.870 6.047		5.542 5.503	<u>.</u>	4.017 4.961	23.1 23.1	4.453	20.3	3.790 3.904		3.276	14.7	2.733 2.817
71					3 6.226		5.666	25.7			4.453		4.020		3.477	14.7	2.017
72			····		3 6.408	28.5	5.832	25.7	÷	23.1	4.720	20.3	4.020	17.6	3.578		
73				<mark>.</mark>	3 6.592		6.000	25.7	5.408	23.1	4.856	20.3	4.255	17.6	3.681		
74					3 6.779	•	6.170	25.7	5.560	23.1	4.994	20.3	4.376		3.785		
75			···		6.968	•	6.342	25.7	٠	23.1	5.134	•	4.498		3.891		<u></u>
76					3 7.160		6.517	25.7		23.1	5.277		4.622		3.999		
77				31.3	3 7.354	28.5	6.694	25.7	<u> </u>	23.1	5.421	•	4.748		4.108		
78				31.3	3 7.551	28.5	6.874	25.7	ģ	23.1	5.568	20.3	4.875	17.6	4.219		
79				31.3	3 7.751	28.5	7.057	25.7	6.358	23.1	5.716	20.3	5.005	17.6	4.332		
80					7.954	28.5	7.243	25.7	6.525	23.2	5.868	20.3	5.137	17.6	4.446		
81					3 8.160			-			6.022						
82					3 8.369	(4	<u> </u>	٠		6.179						
83				31.3	8.582	28.6	7.818	25.8	7.044	23.2	6.338	20.3	5.549	17.6	4.804		
84				31.4	1 8.798	28.6	8.016	25.8	7.223	23.2	6.501	20.3	5.691	17.6	4.928		
85				31.4	9.017	28.6	8.218	25.8	7.405	23.2	6.666	20.4	5.836	17.7	5.055		

NUOVE TARIFFE DI CUBATURA DEL FAGGIO – Fagus sylvatica L.

TAVOLA 3 – classi diametriche 5 cm

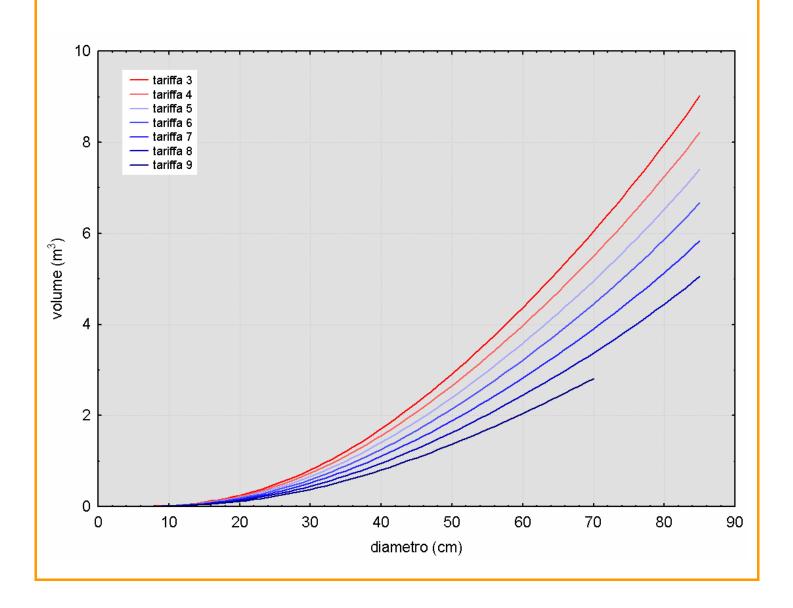
	1	1		2		3		4		5		6		7		8		9
,	1	h ₁	V ₁	h ₂ v ₂	h ₃	V 3	h ₄	V 4	h ₅	V 5	h ₆	V 6	h ₇	V 7	h ₈	V ₈	h ₉	V 9
5	02				7.4	0.0004	6.8	0.0004	6.2	0.0003	5.6	0.0003	5.0	0.0003	4.4	0.0002	3.8	0.0002
10	01				12.5	0.023	11.5	0.021	10.3	0.019	9.3	0.017	8.2	0.015	7.1	0.013	6.1	0.011
15	0				16.8	0.099	15.4	0.091	13.9	0.082	12.4	0.073	10.9	0.064	9.4	0.056	8.0	0.047
20	1				20.4	0.250	18.6	0.228	16.8	0.206	15.0	0.184	13.2	0.161	11.4	0.139	9.6	0.117
25	2				23.3	0.485	21.3	0.443	19.2	0.399	17.1	0.357	15.1	0.313	13.0	0.270	11.0	0.228
30	3				25.6	0.808	23.4	0.737	21.1	0.665	18.9	0.594	16.6	0.522	14.3	0.450	12.1	0.379
35	4				27.4	1.218	25.0	1.111	22.6	1.002	20.2	0.896	17.8	0.787	15.3	0.679	12.9	0.573
40	5				28.8	1.710	26.2	1.559	23.7	1.407	21.2	1.258	18.7	1.106	16.1	0.955	13.6	0.805
45	6				29.8	2.279	27.1	2.077	24.5	1.875	22.0	1.677	19.3	1.475	16.7	1.273	14.1	1.073
50	7				30.5	2.917	27.8	2.657	25.1	2.399	22.5	2.147	19.8	1.887	17.1	1.631	14.4	1.372
55	8				30.9	3.616	28.2	3.293	25.4	2.973	22.8	2.662	20.1	2.339	17.3	2.022	14.6	1.698
60	9				31.2	4.373	28.4	3.981	25.6	3.593	23.0	3.219	20.2	2.827	17.5	2.444	14.7	2.047
65	10				31.3	5.183	28.5	4.717	25.7	4.255	23.1	3.816	20.3	3.348	17.5	2.896	14.7	2.420
70	11				31.3	6.047	28.5	5.503	25.7	4.961	23.1	4.453	20.3	3.904	17.6	3.377	14.7	2.817
75	12				31.3	6.968	28.5	6.342	25.7	5.715	23.1	5.134	20.3	4.498	17.6	3.891		
80	13				31.3	7.954	28.5	7.243	25.7	6.525	23.2	5.868	20.3	5.137	17.6	4.446		
85	14				31.4	9.017	28.6	8.218	25.8	7.405	23.2	6.666	20.4	5.836	17.7	5.055		

NUOVE TARIFFE DI CUBATURA DEL FAGGIO – Fagus sylvatica L.

MODELLO A DOPPIA ENTRATA **MV2**

Struttura funzionale

$$v = a \times (d - d_0)^b \times h^c$$


Unità di misura

V	d	h
m³ cm		m

Parametri della funzione

a	b	С	d₀
0.0000552712344957134	1 94208862027426	1 00642023166998	4 0091

Curve stereometriche

NUOVE Tariffe di cubatura del Faggio – Fagus sylvatica L **MODELLI IPSOMETRICI** Struttura funzionale $h = 1.30 + b_1 d + b_2 d^2 + b_3 d^3 + b_4 d^4$ Unità di misura d m c m Parametri delle funzioni Tariffa 1 Tariffa 2 Tariffa 4 Tariffa 3 Tariffa 5 1.307427143026860 1.186166963418970 1.51763025908650 b_2 -0.02008796622659800 -0.01812297002266890 -0.1558000240796150 b₃ 0.0001231987888215130 0.0001086705248160950 0.000863341519784698 -0.0000002218030271553380 -0.0000001783682242198100 b₄ 0.0000001025796414900680 Tariffa 8 Tariffa 9 Tariffa 6 Tariffa 7 0.930159335177276 0.797821516961136 0.670139179729665 0.540349082636768 -0.01367571655218380 -0.01122963978835770 -0.00906239403887230 -0.00653498029652474 0.00007494859404520630.00005387549231830450.0000382267817236813 0.0000126048858631319 b_4 -0.0000000832118197133290 -0.0000000134670676871118 0.0000000266516089593243 0.0000001346765041950140 **Curve ipsometriche** 35 tariffa 3 tariffa 4 tariffa 5 30 tariffa 6 tariffa 7 tariffa 8 tariffa 9 25 20 altezza (m) 15 10 5 0 0 10 20 30 40 50 60 70 80 90 diametro (cm)

NUOVE TARIFFE DI CUBATURA DEL PINO CEMBRO (Pinus cembra) L.

NUOVE TARIFFE DI CUBATURA DEL PINO CEMBRO – Pinus cembra L.

TAVOLA 1 – diametri da 5 a 45 cm

	1		2		3	4			5		6		7		8		9
d	h ₁ v ₁	h ₂	V ₂	h ₃	V ₃	h ₄	V ₄	h ₅	V ₅	h ₆	V ₆	h ₇	V ₇	h ₈	V ₈	h ₉	V ₉
5								5.5	0.002	4.9	0.001	4.3	0.001	3.8	0.001	3.1	0.001
6							6.3		0.004	5.6	0.004	4.9 (.003	4.3	0.003	3.5	0.002
7							7.1		0.009	6.3	0.008	5.5 C	.007	4.8	0.006	3.9	0.005
8							7.9		0.015	7.0	0.014	6.1 0	.012	5.3	0.010	1.3	0.008
9							8.6		0.023	7.7	0.021	6.7 C	.018	5.8	0.016	1.7	0.013
10								9.4	0.033	8.4	0.030	7.2	0.026	6.3	0.022	5.1	0.018
11							10.	1	0.046	9.0	0.041	7.8 0	.035	6.7	0.031	5.5	0.025
12							10.	9	0.060	9.7	0.054	8.4 0	.047	7.2	0.040	5.9	0.033
13							11.	6	0.077	10.3	0.069	8.9 (.060	7.7	0.051	3.3	0.042
14							12.	3	0.096	11.0	0.086	9.50	.074	8.1	0.064 (5.7	0.053
15								13.0	0.118	11.6	0.105	10.0	0.091	8.6	0.079	7.1	0.065
16							13.	6	0.142	12.2	0.127	10.5	0.110	9.0	0.095	7.5	0.079
17							14.	3	0.168	12.7	0.150	11.0	0.131	9.5	0.112	7.9	0.094
18							14.		0.198	13.3	0.176	11.5	0.153	9.9	0.132	3.3	0.110
19							15.	5	0.229	13.8	0.205	12.0	0.178	10.3	0.153	3.6	0.128
20								16.1	0.263	14.4	0.235	12.5	0.205	10.7	0.176	9.0	0.148
21							16.	7	0.300	14.9	0.268	13.0	0.234	11.1	0.201	9.3	0.169
22							17.		0.339	15.4	0.303	13.4	0.264	11.5	0.227	9.6	0.191
23			,				17.		0.381	15.8	0.340	13.8	0.297	11.8	0.255	10.0	0.215
24							18.	3	0.425	16.3	0.379	14.2	0.332	12.2	0.285	10.3	0.240
25								18.8	0.471	16.7	0.421	14.6	0.368	12.5	0.316	10.6	0.267
26							19.	<u> </u>	0.520	17.2	0.464	15.0	0.407	12.8	0.349	8.01	0.295
27							19.	7	0.571	17.6	0.510	15.4	0.447	13.2	0.384	11.1	0.325
28							20.		0.624	17.9	0.557	15.7	0.489	13.5	0.420	11.4	0.356
29			·····				20.		0.680	18.3	0.607	16.0	0.533	13.7	0.457	11.6	0.388
30								20.9	0.737	18.7	0.658	16.4	0.578	14.0	0.496	11.9	0.421
31							21.		0.797	19.0	0.711	16.7	0.625	14.3	0.537	12.1	0.455
32							21.		0.859	19.3	0.766	17.0	0.674	14.5	0.579	12.3	0.491
33							22.		0.922	19.6	0.823	17.2	0.724	14.8	0.622	12.5	0.527
34							22.		0.987	19.9	0.881	17.5	0.776	15.0	0.666	12.7	0.565
35								22.6	1.055	20.2	0.941	17.7	0.829	15.2	0.712	12.9	0.604
36							22.		1.123	20.4	1.002	18.0	0.883	15.4	0.758	13.0	0.643
37							23.		1.194	20.7	1.065	18.2	0.938	15.6	0.806	13.2	0.683
38							23.		1.266	20.9	1.129	18.4	0.995	15.8	0.855	13.3	0.724
39							23.		1.339	21.1	1.194	18.6	1.053	15.9	0.905	13.4	0.766
40								23.9	1.414	21.3	1.261	18.7	1.112	16.1	0.956	13.6	0.809
41							24.		1.490	21.5	1.328	18.9	1.172	16.2	1.007	13.7	0.852
42							24.		1.568	21.6	1.397	19.1	1.233	16.4	1.060	13.8	0.896
43							24.		1.647	21.8	1.467	19.2	1.295	16.5	1.113	13.9	0.940
44							24.		1.727	22.0	1.538	19.4	1.358	16.6	1.167	14.0	0.985
45								24.9	1.808	22.1	1.610	19.5	1.422	16.7	1.222	14.0	1.030

NUOVE TARIFFE DI CUBATURA DEL PINO CEMBRO – Pinus cembra L.

TAVOLA 2 – diametri da 46 a 85 cm

al .	1	2	3	4	[5	5		6		7		8		9
d	$h_1 \mid v_1$	h ₂ v ₂	h ₃ v ₃	h ₄ v ₄	h ₅	V ₅	h ₆	V ₆	h ₇	V ₇	h ₈	V 8	h ₉	V 9
46					25.0	1.890	22.2	1.683	19.6	1.486	16.8	1.277	14.1	1.076
47					25.1	1.973	22.3	1.757	19.7	1.551	16.9	1.334	14.2	1.123
48					25.3	2.057	22.5	1.831	19.8	1.618	17.0	1.390	14.2	1.170
49					•	2.143	22.6	1.907	19.9	1.684	17.1	1.448	14.3	1.217
50					25.5	2.229	22.6	1.983	20.0	1.752	17.1	1.506	14.3	1.265
51					25.6	2.316	22.7	2.061	20.0	1.820	17.2	1.564	14.4	1.314
52					25.7	2.404	22.8	2.139	20.1	1.889	17.2	1.624	14.4	1.362
53					25.8	2.493	22.9	2.217	20.2	1.958	17.3	1.683	14.5	1.412
54					25.8	2.583	22.9	2.297	20.2	2.028	17.3	1.744	14.5	1.461
55					25.9	2.674	23.0	2.377	20.3	2.099	17.4	1.804	14.5	1.512
56					26.0	2.765	23.1	2.458	20.3	2.171	17.4	1.866	14.6	1.562
57					26.1	2.858	23.1	2.540	20.4	2.243	17.5	1.928	14.6	1.614
58						2.951	23.2	2.623	20.4	2.316	17.5	1.990	14.6	1.666
59					26.2	3.046	23.2	2.707	20.5	2.389	17.5	2.054	14.6	1.718
60					26.2	3.141	23.3	2.791	20.5	2.464	17.6	2.117	14.7	1.771
61					26.3	3.238	23.3	2.877	20.5	2.539	17.6	2.182	14.7	1.825
62					26.3	3.335	23.3	2.963	20.6	2.615	17.6	2.247	14.7	1.879
63					26.4	3.433	23.4	3.050	20.6	2.691	17.6	2.312	14.7	1.935
64					26.4	3.533	23.4	3.138	20.6	2.769	17.7	2.379	14.7	1.990
65					26.4	3.633	23.4	3.227	20.6	2.847	17.7	2.446	14.8	2.047
66					26.5	3.734	23.5	3.317	20.7	2.926	17.7	2.514	14.8	2.105
67					26.5	3.837	23.5	3.408	20.7	3.006	17.7	2.582	14.8	2.163
68					26.5	3.941	23.5	3.500	20.7	3.087	17.8	2.652	14.8	2.222
69					26.6	4.045	23.6	3.594	20.7	3.169	17.8	2.722	14.9	2.282
70					26.6	4.151	23.6	3.688	20.8	3.251	17.8	2.793	14.9	2.343
71					26.7	4.258	23.6	3.783	20.8	3.335	17.8	2.864	14.9	2.405
72					26.7	4.366	23.7	3.879	20.8	3.420	17.8	2.937	15.0	2.467
73					26.7	4.475	23.7	3.977	20.9	3.505	17.9	3.010	15.0	2.530
74					26.8	4.585	23.7	4.075	20.9	3.592	17.9	3.085	15.0	2.594
75					26.8	4.697	23.8	4.175	20.9	3.679	17.9	3.159	15.0	2.659
76					26.8	4.809	23.8	4.275	20.9	3.767	17.9	3.235	15.1	2.724
77					26.8	4.922	23.8	4.377	21.0	3.856	18.0	3.312	15.1	2.790
78					26.9	5.036	23.9	4.479	21.0	3.946	18.0	3.389	15.1	2.856
79					26.9	5.151	23.9	4.582	21.0	4.036	18.0	3.466	15.1	2.922
80					26.9	5.266	23.9	4.685	21.0	4.127	18.0	3.545	15.1	2.988
81					26.9	5.382	23.9	4.789	21.0	4.218	18.0	3.623	15.2	3.054
82					27.0	5.498	24.0	4.894	21.1	4.309	18.0	3.702	15.2	3.119
83					27.0	5.614	24.0	4.998	21.1	4.401	18.1	3.781	15.2	3.184
84					27.0	5.730	24.0	5.103	21.1	4.492	18.1	3.860	15.2	3.248
85					27.0	5.846	24.0	5.207	21.1	4.584	18.1	3.939	15.1	3.310

NUOVE TARIFFE DI CUBATURA DEL PINO CEMBRO – Pinus cembra L.

TAVOLA 3 - classi diametriche 5 cm

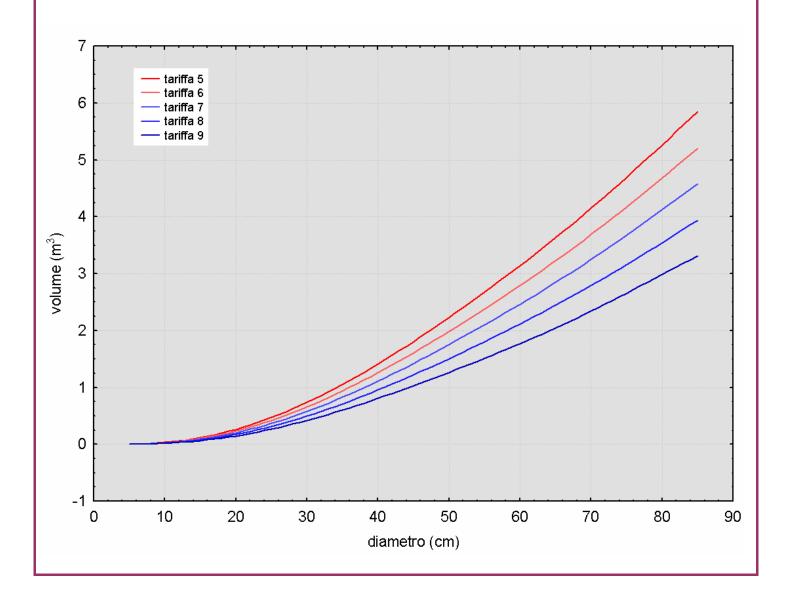
	d		1	2	2	;	3		4		5		6		7		8		9
	u	h ₁	V ₁	h ₂	V ₂	h ₃	V ₃	h ₄	V ₄	h ₅	V ₅	h ₆	V ₆	h ₇	V ₇	h ₈	V ₈	h ₉	V 9
5	02									5.5	0.002	4.9	0.001	4.3	0.001	3.8	0.001	3.1	0.001
10	01									9.4	0.033	8.4	0.030	7.2	0.026	6.3	0.022	5.1	0.018
15	0									13.0	0.118	11.6	0.105	10.0	0.091	8.6	0.079	7.1	0.065
20	1									16.1	0.263	14.4	0.235	12.5	0.205	10.7	0.176	9.0	0.148
25	2									18.8	0.471	16.7	0.421	14.6	0.368	12.5	0.316	10.6	0.267
30	3									20.9	0.737	18.7	0.658	16.4	0.578	14.0	0.496	11.9	0.421
35	4									22.6	1.055	20.2	0.941	17.7	0.829	15.2	0.712	12.9	0.604
40	5									23.9	1.414	21.3	1.261	18.7	1.112	16.1	0.956	13.6	0.809
45	6									24.9	1.808	22.1	1.610	19.5	1.422	16.7	1.222	14.0	1.030
50	7									25.5	2.229	22.6	1.983	20.0	1.752	17.1	1.506	14.3	1.265
55	8									25.9	2.674	23.0	2.377	20.3	2.099	17.4	1.804	14.5	1.512
60	9									26.2	3.141	23.3	2.791	20.5	2.464	17.6	2.117	14.7	1.771
65	10									26.4	3.633	23.4	3.227	20.6	2.847	17.7	2.446	14.8	2.047
70	11									26.6	4.151	23.6	3.688	20.8	3.251	17.8	2.793	14.9	2.343
75	12									26.8	4.697	23.8	4.175	20.9	3.679	17.9	3.159	15.0	2.659
80	13									26.9	5.266	23.9	4.685	21.0	4.127	18.0	3.545	15.1	2.988
85	14									27.0	5.846	24.0	5.207	21.1	4.584	18.1	3.939	15.1	3.310

NUOVE TARIFFE DI CUBATURA DEL PINO CEMBRO - Pinus cembra L.

MODELLO A DOPPIA ENTRATA MV2

Struttura funzionale

$$V = a \times (d - d_0)^b \times h^c$$


Unità di misura

v	d	h
m³ cm		m

Parametri della funzione

а	b	С	d_0
0.000188167619876239	1.61371288034635	0.985265642143746	3.69465

Curve stereometrica

NUOVE TARIFFE DI CUBATURA DEL PINO CEMBRO - Pinus cembra L. **M**ODELLI IPSOMETRICI Struttura funzionale $h = 1.30 + b_1 d + b_2 d^2 + b_3 d^3 + b_4 d^4 + b_5 d^5$ Unità di misura h d m c m Parametri delle funzioni Tariffa 5 Tariffa 6 Tariffa 7 Tariffa 8 Tariffa 9 0.840578777757921 0.726353407597132 0.482968911797867 324375113876090 0.586556932913235 b₂ -0.000545001627817387 0.000849222514314748 0.003680288982446010 0.003844331035558460 009520040520312760 bз -0.000300117275676114 -0.000302425407205645 -0.000329612991095656 -0.000292026195332979 -0. 000426656252914761 b₄ 0.00000420000427917910 0.00000373065484981362 0.00000427628443199169 0.00000430207216493596 00000533053370403397 -0.0000000152029938142345 0000000222542831807451 b_5 -0.000000181986290980746 -0.0000000177375409582746-0.0000000177639095453902Curve ipsometriche 28 tariffa 5 26 tariffa 6 tariffa 7 tariffa 8 24 - tariffa 9 22 20 18 altezza (m) 16 14 12 10 8 6 4 2 0 10 20 30 40 50 60 70 80 90 diametro (cm)

NUOVE TARIFFE DI CUBATURA DEL PINO NERO Pinus nigra Arnold

NUOVE TARIFFE DI CUBATURA DEL PINO NERO – Pinus nigra Arnold

TAVOLA 1 - diametri da 5 a 65 cm

	1		2		3		4		5		6		7		8		9
d	h ₁ v ₁	h ₂	V ₂	h ₃	V ₃	h ₄	V_4	h ₅	V 5	h ₆	V ₆	h ₇	V ₇	h ₈	V 8	h ₉	V 9
5	7.8 0.001	6.9	0.001	6.3	0.001	5.5	0.001	5.0	0.001	4.5	0.001	4.3	0.001	3.6	0.001	2.9	0.001
6	9.0 0.004	8.0	0.004 7		0.004	6.4	0.003	5.8 0		5.2	0.003 4		0.002	4.1	0.002		0.002
7	10.2 0.009	9.1	0.008 8		0.008	7.3	0.007	6.60		5.9	0.006 5		0.005	4.6	0.004		0.004
8	11.3 0.016 12.4 0.026	10.1 11.2	0.015 9 0.024 1		0.014	8.2 9.1	0.012 0.019	7.5 0 8.3 0		6.7 7.4	0.010 6 0.016 6		0.009 0.015	5.1 5.7	0.008		0.006 0.010
10	13.4 0.038	12.2	0.035	11.2	0.032	10.0	0.029	9.1	0.026	8.2	0.024	7.4	0.022	6.2	0.012	5.0	0.015
11	14.5 0.053	13.2		2.2	0.045	10.9	0.040	9.9 0		8.9	0.033 8		0.030	6.8	0.026		0.021
12	15.4 0.070	14.2	0.065	•	0.060	11.7	0.054	10.7	0.050	9.6	0.045 8		0.040	7.3	0.035	.8	0.028
13	16.4 0.091	15.1	0.084		0.078	12.6	0.071	11.5	0.065	10.3	0.059 9		0.053	7.8	0.045		0.037
14 15	17.3 (0.114 18.2 (0.141	16.0	0.106 1		0.099 0.123	13.4	0.090 0.112	12.3 13.0	0.083	11.0	0.075 9		0.067 0.083	8.3	0.058		0.047 0.058
16	18.2 0.141 19.0 0.171	16.9 17.7	0.132 0.160 1	15.7 6.6	0.123	14.2 15.0	0.112	13.7	0.103 0.126	11.7 12.4	0.093 0.114 1	10.3 ∩ 8	0.003	8.8 9.3	0.072 0.088	7.1	0.038
17	19.8 0.204	18.5	0.191		0.180	15.8	0.165	14.4	0.151	13.0	0.138 1		0.121	9.8	0.105		0.085
18	20.6 0.240	19.3	0.226		0.213	16.5	0.195	15.1	0.180	13.7	0.163 1		0.143	10.3	0.125		0.101
19	21.3 0.279	20.0	0.264	8.8	0.249	17.2	0.229	15.8	0.211	14.3	0.191 1	2.3	0.167	10.7	0.147	.5	0.118
20	22.0 0.322	20.8	0.305	19.5	0.288	17.9	0.265	16.4	0.244	14.8	0.222	12.8	0.194	11.1	0.170	8.9	0.137
21	22.7 ().367	21.4	0.349 2		0.330	18.6	0.305	17.0	0.280	15.4	0.255 1		0.222	11.5	0.195		0.158
22	23.3 0.416 23.9 0.469	22.1 22.7	0.396 2 0.446 2		0.375 0.422	19.2 19.8	0.347 0.392	17.5 18.1	0.319 0.361	15.9 16.4	0.291 1 0.329 1		0.253 0.286	11.9 12.3	0.222 9	• • • • • • • • • • • • • • • • • • • •	0.180 0.203
24	24.5 0.524	23.2	0.499 2		0.422	20.3	0.440	18.6	0.405	16.9	0.369 1		0.321	12.7	0.282	•	0.203
25	25.0 0.582	23.8	0.555	22.5	0.526	20.8	0.490	19.1	0.451	17.3	0.411	14.9	0.358	13.0	0.314	10.4	0.254
26	25.6 0.644	24.3	0.614 2	3.0	0.583	21.3	0.543	19.5	0.500	17.7	0.456 1	5.2	0.396	13.3	0.348	10.6	0.282
27	26.1 0.708	24.8	0.676 2		0.641	21.8	0.599	19.9	0.551	18.1	0.503 1		0.437	13.6	0.384		0.311
28	26.5 0.776	25.2	0.740 2	*	0.703	22.2	0.657	20.3	0.604	18.5	0.552 1		0.480	13.9	0.421		0.341
29 30	27.0 (0.846 27.4 0.919	25.7 26.1	0.807 2 0.877	.4.3 24.7	0.767 0.833	22.6 23.0	0.718 0.780	20.7 21.1	0.660 0.718	18.8 19.1	0.603 1 0.656	6.2 16.5	0.524 0.571	14.1 14.3	0.460 0.501	11.3 11.5	0.373 0.406
31	27.8 0.995	26.4	0.949 2		0.902	23.4	0.780	21.4	0.718	19.4	0.710 1		0.619	14.6	0.542		0.439
32	28.2 1.074	26.8	1.024 2		0.973	23.7	0.913	21.7	0.840	19.7	0.767 1		0.669	14.8	0.585	•	0.474
33	28.6 1.155	27.1	1.101 2		1.046	24.0	0.982	22.0	0.903	19.9	0.825 1		0.720	15.0	0.630		0.510
34	28.9 1.240	27.4	1.180 2		1.121	24.3	1.054	22.2	0.969	20.2	0.885 1	7.5	0.774	15.1	0.675		0.547
35	29.2 1.326	27.7	1.262	26.2	1.199	24.6	1.127	22.5	1.037	20.4	0.946	17.7	0.829	15.3	0.722	12.2	0.585
36 37	29.5 1.416 29.8 1.507	28.0 28.2	1.346 2 1.433 2		1.279 1.360	24.8 25.0	1.202 1.280	22.7 22.9	1.106 1.177	20.6 20.8	1.009 1 1.074 1		0.885 0.943	15.4 15.6	0.770	• • • • • • • • • • • • • • • • • • • •	0.624 0.664
38	30.1 1.602	28.5	1.521 2		1.444	25.2	1.359	23.1	1.250	20.9	1.140 1		1.003	15.7	0.870	• • • • • • • • • • • • • • • • • • • •	0.705
39	30.3 1.699	28.7	1.612 2		1.530	25.4	1.440	23.3	1.325	21.1	1.208 1		1.064	15.8	0.922	•	0.746
40	30.6 1.798	28.9	1.705	27.3	1.617	25.6	1.522	23.4	1.401	21.2	1.277	18.6	1.127	15.9	0.975	12.7	0.789
41	30.8 1.899	29.1	1.800 2		1.707	25.8	1.607	23.6	1.479	21.4	1.348 1		1.191	16.0	1.029	•	0.832
42	31.0 2.003	29.3	1.898 2		1.799	25.9	1.693	23.8	1.559	21.5	1.420 1		1.257	16.1	1.084	• • • • • • • • • • • • • • • • • • • •	0.876
43 44	31.2 2.110 31.4 2.218	29.5 29.7	1.998 2 2.100 2	•	1.893 1.989	26.1 26.2	1.782 1.872	23.9 24.0	1.641 1.725	21.6 21.7	1.494 1 1.569 1		1.324 1.392	16.2 16.3	1.141		0.921 0.967
45	31.6 2.329	29.8	2.204	28.1	2.087	26.4	1.964	24.2	1.810	21.8	1.646	19.3	1.463	16.4	1.257	13.0	1.014
46	31.8 2.442	30.0	2.311 2		2.187	26.5	2.057	24.3	1.898	22.0	1.725 1		1.535	16.5	1.317		1.062
47	32.0 2.558	30.1	2.420 2	28.4	2.290	26.6	2.153	24.4	1.987	22.1	1.805 1		1.608	16.6	1.379	13.1	1.111
48	32.1 2.676	30.3	2.532 2		2.395	26.7	2.251	24.6	2.079	22.2	1.888 1		1.683	16.6	1.442		1.161
49 50	32.3 2.796 32.4 2.918	30.5 30.6	2.646 2 2.762	•	2.502 2.611	26.8 27.0	2.351 2.453	24.7 24.8	2.172 2.268	22.3 22.4	1.972 1 2.057	***************************************	1.759 1.837	16.7	1.506 1.572	1	1.212 1.264
51	32.6 3.043	30.7	2.881 2		2.722	27.1	2.455	24.9	2.366	22.5	2.145 1		1.037	16.8 16.9	1.639		1.317
52	32.7 3.170	30.9	3.003 2		2.836	27.2	2.663	25.0	2.466	22.5	2.235 2		1.998	16.9	1.708		1.371
53	32.9 3.299	31.0	3.127 2		2.953	27.3	2.771	25.2	2.567	22.6	2.326 2		2.080	17.0	1.778		1.426
54	33.0 \$.431	31.2	3.253 2		3.071	27.4	2.881	25.3	2.671	22.7	2.419 2		2.164	17.1	1.849	13.5	1.482
55	33.1 3.564	31.3	3.382		3.192	27.5	2.993	25.4	2.777	22.8	2.514		2.250	17.2	1.922		1.540
56	33.2 3.700	31.4	3.513 2		3.315	27.6	3.107	25.5	2.885	22.9	2.611 2		2.336	17.2	1.996		1.598
57 58	33.4 \$.838	31.6	3.646 2		3.439	27.7	3.223	25.6 25.7	2.994 3.105	23.0	2.709 2		2.424	17.3	2.072 2.149		1.658
59	33.5 3.979 33.6 4 .121	31.7 31.8	3.781 2 3.918 2	•	3.566 3.694	27.8 27.9	3.341 3.460	25.7 25.8	3.105	23.1 23.2	2.809 2 2.910 2		2.513 2.602	17.4 17.4	2.149		1.718 1.779
60	33.7 4.266	31.9	4.056		3.823	27.9	3.581	25.9	3.329	23.2	3.011	20.6	2.692	17.5	2.304		1.841
61	33.8 4.412	32.0	4.196 3		3.954	28.0	3.702	25.9	3.442	23.3	3.113 2		2.783	17.5	2.383		1.904
62	33.9 4.561	32.1	4.337 3		4.084	28.1	3.824	26.0	3.555	23.3	3.216 2		2.873	17.6	2.462		1.966
63	34.0 4.711	32.2	4.478 3		4.215	28.1	3.946	26.0	3.668	23.4	3.317 2		2.964	17.6	2.541		2.029
64	34.0 4.863	32.2	4.619 3		4.345	28.1	4.068	26.0	3.778	23.4	3.418 2		3.053	17.6	2.618		2.092
65	34.1 5.016	32.2	4.759	30.2	4.473	28.1	4.189	26.0	3.887	23.4	3.517	20.7	3.141	17.6	2.695	13.9	2.154

NUOVE TARIFFE DI CUBATURA DEL PINO NERO – Pinus nigra Arnold

TAVOLA 2 - classi diametriche 5 cm

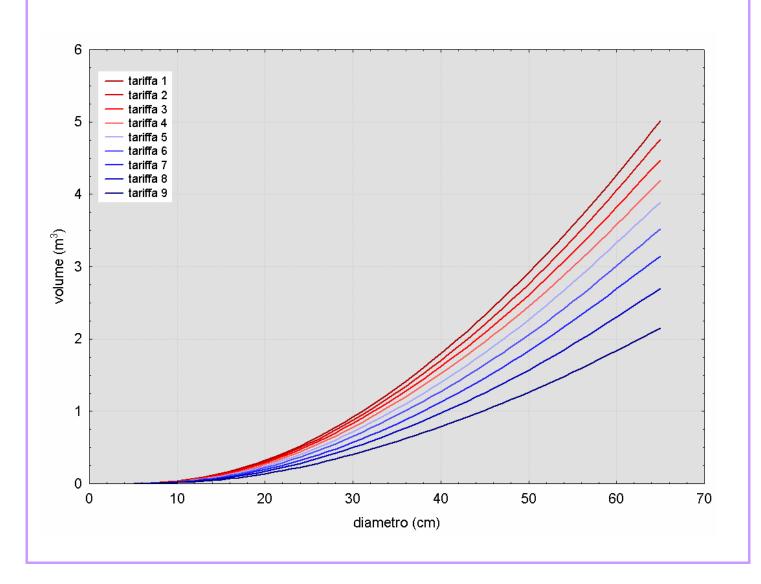
	1		1		2		3		4		5		6		7		8		9
	4	h ₁	V 1	h ₂	V ₂	h ₃	V 3	h ₄	V 4	h ₅	V 5	h ₆	V 6	h ₇	V 7	h ₈	V 8	h ₉	V 9
5	02	7.8	0.001	6.9	0.001	6.3	0.001	5.5	0.001	5.0	0.001	4.5	0.001	4.3	0.001	3.6	0.001	2.9	0.001
10	01	13.4	0.038	12.2	0.035	11.2	0.032	10.0	0.029	9.1	0.026	8.2	0.024	7.4	0.022	6.2	0.018	5.0	0.015
15	0	18.2	0.141	16.9	0.132	15.7	0.123	14.2	0.112	13.0	0.103	11.7	0.093	10.3	0.083	8.8	0.072	7.1	0.058
20	1	22.0	0.322	20.8	0.305	19.5	0.288	17.9	0.265	16.4	0.244	14.8	0.222	12.8	0.194	11.1	0.170	8.9	0.137
25	2	25.0	0.582	23.8	0.555	22.5	0.526	20.8	0.490	19.1	0.451	17.3	0.411	14.9	0.358	13.0	0.314	10.4	0.254
30	3	27.4	0.919	26.1	0.877	24.7	0.833	23.0	0.780	21.1	0.718	19.1	0.656	16.5	0.571	14.3	0.501	11.5	0.406
35	4	29.2	1.326	27.7	1.262	26.2	1.199	24.6	1.127	22.5	1.037	20.4	0.946	17.7	0.829	15.3	0.722	12.2	0.585
40	5	30.6	1.798	28.9	1.705	27.3	1.617	25.6	1.522	23.4	1.401	21.2	1.277	18.6	1.127	15.9	0.975	12.7	0.789
45	6	31.6	2.329	29.8	2.204	28.1	2.087	26.4	1.964	24.2	1.810	21.8	1.646	19.3	1.463	16.4	1.257	13.0	1.014
50	7	32.4	2.918	30.6	2.762	28.8	2.611	27.0	2.453	24.8	2.268	22.4	2.057	19.8	1.837	16.8	1.572	13.3	1.264
55	8	33.1	3.564	31.3	3.382	29.4	3.192	27.5	2.993	25.4	2.777	22.8	2.514	20.3	2.250	17.2	1.922	13.5	1.540
60	9	33.7	4.266	31.9	4.056	30.0	3.823	27.9	3.581	25.9	3.329	23.2	3.011	20.6	2.692	17.5	2.304	13.8	1.841
65	10	34.1	5.016	32.2	4.759	30.2	4.473	28.1	4.189	26.0	3.887	23.4	3.517	20.7	3.141	17.6	2.695	13.9	2.154

NUOVE TARIFFE DI CUBATURA DEL PINO NERO – Pinus nigra Arnold

MODELLO A DOPPIA ENTRATA MV2

Struttura funzionale

$$v = a \times (d - d_0)^b \times h^c$$


Unità di misura

V	d	h
m³ cm		m

Parametri della funzione

а	b	С	d_0
0.000128924310780902	1.76308589457555	0.938444909041497	3.69465

Curve stereometriche

